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Thermal capillary waves on bounded nanoscale thin films
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The effect of confining walls on the fluctuation of a nanoscale thin film’s free surface is studied using stochastic
thin-film equations (STFEs). Two canonical boundary conditions are employed to reveal the influence of the
confinement: (1) an imposed contact angle and (2) a pinned contact line. A linear stability analysis provides the
wave eigenmodes, after which thermal-capillary-wave theory predicts the wave fluctuation amplitudes. Molecu-
lar dynamics (MD) simulations are performed to test the predictions, and a Langevin diffusion model is proposed
to capture oscillations of the contact lines observed in MD simulations. Good agreement between the theoretical
predictions and the MD simulation results is recovered, and it is discovered that confinement can influence the
entire film. Notably, a constraint on the length scale of wave modes is found to affect fluctuation amplitudes from
our theoretical model, especially for 3D films. This opens up challenges and future lines of inquiry.
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I. INTRODUCTION

The behavior of fluids at the nanoscale has attracted in-
creasing attention as fluid-based technologies continue to
minituarize [1], for example, in lab-on-a-chip devices [2],
nanofluidic transistors [3], ink-jet printing [4], and osmotic
transport [5]. The dynamics at such scales are challenging, if
not impossible, to observe experimentally, making modeling
and simulation a vital component of continued technological
progress. However, due to the additional physical phenomena
that appear when going from traditional engineering scales
to the nanoscale [6], conventional fluid dynamical modeling
approaches are often inaccurate.

A canonical nanoscale flow topic that underpins many
applications is the behavior and stability of thin liquid films
on rigid solid surfaces. Here stability is crucial to coating
technologies [7,8] while instability can be harnessed to create
predetermined patterns [9]. Driven by technological demands
and fundamental interest, there is a huge body of research in
this field; see, for example, review articles [9-12]. It is well
established that at the nanoscale disjoining pressure becomes
important, competing with surface tension for the stability

*jingbang.liu@warwick.ac.uk
fzhaochengxi @ustc.edu.cn

*D.Lockerby @ warwick.ac.uk
$].E.Sprittles @warwick.ac.uk

2470-0045/2023/107(1)/015105(25)

015105-1

of the film and driving rupture via the so-called spinodal
mechanism [13-15]. Notably, though, in order for theoretical
predictions of rupture timescales to agree with those from
experiment, thermal fluctuations, which drive free-surface
nanowaves, need to be incorporated in the physical model
[16]. The dynamics of these nanowaves on thin films form the
basis of this work, where we consider their behavior within a
confined environment, i.e., bounded by surfaces.

It has long been expected that the chaotic thermal motion
of molecules in a liquid would generate so-called “thermal
capillary waves” at liquid-fluid interfaces [17,18]. Relatively
recently, such waves have been experimentally confirmed
using optical scattering techniques [19-21], by exploiting ul-
tralow surface tension fluids to generate micron-scale waves
[22,23] and, most recently, using an atomic force microscope
cantilever placed on a micro hemispherical bubble [24].

An alternative tool for probing the physics of the nanoscale
is molecular dynamics (MD) simulations, providing an en-
vironment for conducting “virtual experiments” [25,26] that
complement traditional methods and yield additional under-
standing. MD simulations have observed thermal capillary
waves in the context of nanoscale thin films [27-31], the
instability and breakup of liquid jets [32-34], the coales-
cence of nanodroplets [35-37], and films on fibers [38].
While MD contains the necessary nanoscale physics to cap-
ture thermal capillary waves, it is both very computationally
expensive and requires interpretation that is arguably best
provided by macroscopic theories. For illustration, in this
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article, a 51.4 ns simulation of a thin film containing 32 883
Lennard-Jones particles took 11 h to run on a 28 core
CPU; and to obtain statistically reliable averages, multiple
realizations are needed. Clearly, there is a need for a com-
plementary modeling approach that is more computationally
tractable.

To go beyond conventional fluid mechanics and include
thermal fluctuations, Landau and Lifshitz introduced the equa-
tions of fluctuating hydrodynamics (FH) [39] by adding a
random stress tensor satisfying the fluctuation dissipation the-
orem into the Navier-Stokes equations. For thin liquid films,
the stochastic thin-film equation (STFE), accurate in the lu-
brication approximation, has been derived for planar films
[40,41]; a similar stochastic equation has been obtained for
jets [32]. Extensions of the STFE have also been derived,
for example, for different slip conditions [28,38] and with an
elastic plate on top of the film [42].

A linear stability analysis can be applied to the STFE
to obtain a power spectrum for the thermal capillary waves
[43] that can be compared with experiment [16]. The power
spectrum of the free-surface waves has also been shown to
agree with MD [27,38], exhibiting unconventional effects like
an evolving wave number associated with fastest growth.
Attempts have also been made to solve the full nonlinear
STFE, and its variants, numerically [34,44-46], which, al-
though requiring more complex formulations, still generate
large computational savings compared with MD. In summary,
the STFE is a remarkably powerful and efficient tool for
studying the dynamics of ultrathin films whose potential is yet
to be fully exploited (e.g., thus far most analyses are confined
to two dimensions).

Notably, previous studies of the STFE either assume the
films are unbounded, that the dynamics are periodic on some
length scale (essentially, to enable a simple Fourier analysis),
or that the boundaries are sufficiently far away that they have
no effect other than to potentially regularize the solution at
some upper scale. How then, does confinement, i.e., the ef-
fects of nearby boundaries, affect the dynamics of nanoscale
films? This will be our focus, beginning by considering the
properties of nanowaves in thermal equilibrium.

In this work, we examine, in both quasi-two and three
dimensions, the effect of the two typical boundary conditions
where a free surface meets a wall: (1) an imposed contact an-
gle and (2) a (partially) pinned contact line. A linear stability
analysis is performed and the waves modes are calculated by
solving the eigenvalue problem for each boundary condition.
Thermal-capillary-wave theory is used to predict the fluctua-
tion amplitude and then validated against MD simulations.

The paper is organized as follows. In Sec. II we consider
quasi-2D bounded films with the two different boundary con-
ditions and for each provide two ways to derive a theoretical
prediction for the fluctuation amplitude of the free surface:
(1) from thermal-capillary-wave theory and (2) directly from
the STFE. Details of MD simulations are provided and results
are compared with the theory. In Sec. III we extend our study
to 3D circular bounded films with two different boundary
conditions; theories and fluctuation amplitudes are derived.
MD simulations are performed and results are compared. In
Sec. IV the role of a cutoff length scale is then discussed. In
Sec. V future research directions are outlined.

contact line

h(z,t)

solid

-

Yy x

FIG. 1. An illustration of the geometry of the quasi-2D thin-film
problem (top) and a snapshot of a representative MD simulation for
a thin film with 90° contact angle (below); yellow particles denote
liquid argon and red particles denote platinum solid.

II. QUASI-2D BOUNDED THIN FILMS

In this section we present the modeling and MD simulation
results of 2D bounded thin films on a solid that is in the (x, y)
plane at z = 0, as shown in Fig. 1. The MD simulations are
inherently 3D, and to approximate a 2D flow the thickness of
the film L, in the y direction is set to be much smaller than
the length of the film L,, making it “quasi-2D.” To compare
the theory to MD results, we consider quantities which are
averaged “into the page,” over L, in the y direction, resulting
in all quantities depending only on (x, t); see [27]. Then, in the
absence of disjoining pressure, whose influence we assume to
be negligible in thermal equilibrium for the film heights we
consider, under the lubrication approximation [10] the Navier-
Stokes equations are simplified to provide a description of the
free surface z = h(x, t) given by

ah 3 [ .3
Zo Y (), (1)
ot 3 0x x3

where y is the surface tension and p is the dynamic viscos-
ity. When thermal fluctuations are included, the stochastic
thin-film equation (STFE) [40,41,43] can be derived from
fluctuating hydrodynamics:

oh d a3h 2kgT 0
Do T () [T PN, @
ot 3u 0x ax? 3uLy dx

where kg is the Boltzmann constant and 7 is the temperature.
Thermal noise N (x, t) has zero mean and covariance

N, HON @, 1)) =8(x —x)s@ — 1), 3)

which means that the noise is uncorrelated in both time and
space. Note, the ,/1/L, factor in the noise term of Eq. (2)
comes from averaging in the y direction.

One can easily see that a flat free surface h(x,t) = hg
is a steady solution to Eq. (1). However, thermal fluctua-
tions, modeled by the noise term in Eq. (2), drives the free
surface away from the steady solution, creating thermal cap-
illary waves [9,26]. In the case of fluctuation-driven films,
(h(x,1)) = ho, where () represents ensemble average.

To understand the properties of the nanoscale waves, we
consider a linearized setup with h(x, t) = ho + Sh(x,t) and
8h < hy. Then, as is conventionally done, if we assume the
domain is periodic on a length L,, the perturbation can be
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decomposed into Fourier modes and the fluctuation amplitude
(or surface roughness) can be estimated by [18,26]
2
(8h*) = L 5, 4)
12 L,

where 7 = «/kgT /y is the “thermal length scale” character-
izing the approximate amplitude of these waves. Interestingly,
the dynamic growth of these nanoscale waves from an initially
flat interface has been shown in [29] to fall into a specific
universality class.

Here we consider a different, practically more realistic
setup, with solid walls at x = 0, L, and two different phys-
ically inspired boundary conditions: (1) a prescribed 90°
contact angle and (2) (partially) pinned contact lines.

A. Prescribed 90° contact angle

As a starting point, we consider a 90° contact angle, for
which the equilibrium state is on average a flat film. In this
case

oh
0x

oh

= =0. )
x=0 ox x=L

It is worth noting that here we have assumed that the contact
angle is 90° at every instant in time. Assuming also that the
walls are impermeable, we have

33h 93h

- = — =0. 6
x|, Ox? ©

x=Ly

Since the boundary conditions are not periodic, we can no
longer assume the wave modes to be Fourier. Instead, lin-
earizing the LE and solving the corresponding eigenvalue
problem, we can show that the appropriate wave modes (see
Appendix A 1) are as follows:

¢n(x) = cos (nzx) n=12,.... (7

‘X

Given this information, we can proceed with the classical
“thermal-capillary-wave theory” approach [47].

1. Thermal-capillary-wave theory
The free surface can be written as the superposition of the
average film thickness /o and a perturbation A, (x, t):
h(x,t) = ho + hi(x, 1). 3

Here A (x, t) can be decomposed into the wave modes ¢,(x),
so that

hi(x,0) =Y an(t)n(x), ©)

n=1

and it is assumed that a,(¢) < ho. An energetic argument,
exploiting equipartition in thermal equilibrium, will then give
us the statistical properties of the amplitudes (the a,,).

The cost of energy for doing work against surface tension
by expanding the interface’s area is given by

L o\’
0 X

where L, is the film length into the page. Taking the standard
thin-film approximation that d02/dx < 1 we have

E L/Llah y (11)
o - — X,
Yo ) 2k

so that using Eq. (8) and Eq. (9) we can obtain the total energy:

E= ZE_

n=1

2 2

L
T (12)
4 L.

According to the equipartition theorem, at thermal equilib-
rium the energy is shared equally among each mode, i.e.,
(E,) = kT /2, leading to an expression for the variance of
each mode’s amplitude (note their means are zero by construc-
tion):
(@)= Spe
w2 " Ly n?
This expression then allows us to obtain information about
the nanowaves in thermal equilibrium. Using Eq. (9) and
(amay) = 8un(a) (see Appendix A2), we can find the vari-
ance of the perturbation across the film as follows:

h2(x) <Zam cos (mnx) Zan cos <n7rx>>
m=1
nnx)

COS2 ( I,

o0
_ 5 5 [ nmx _ﬁL
- e () 2 £

_pll L (1oxy (14)
L 12 2 L) |

Notably, in contrast to the periodic spatially homogeneous
case (4), Eq. (14) is a function of x. A full discussion of this
case will be provided after we have compared to MD results.

There is also an alternative derivation for (a?) directly from
the STFE (see Appendix A 2). Since the STFE describes the
time evolution of the film height from some initial (nonequi-
librium) state, the result is also time dependent:

) = 2UpT Ly 1

" L——[l —exp(— 2An*1)], (15)
where A = yhin*/(3uL?). This tells us that an initial per-
turbation decays exponentially with time, and that at thermal
equilibrium (as t — 00) the results from the STFE agrees with
Eq. (13) derived from thermal-capillary-wave theory, which
provides a more straightforward derivation.

(13)

2. Molecular-dynamics simulations

To verify our theoretical prediction, we use molecular dy-
namics simulations (MD) as a virtual experiment to probe the
behavior of quasi-2D thin films that are bounded on both sides
by solid walls with 90° contact angles.

The simulations are performed in the open-source software
LAMMPS [48], which has been widely used to study fluid
phenomena at the nanoscale, e.g., [27,33,49-56].

Argon is used as a fluid and platinum is used for the solid
walls. The interaction between particles are modeled using the
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TABLE I. Simulation parameters and their nondimensional val-
ues (reduced units based on Lennard-Jones potential parameters €,
oy, my) for a 90° contact angle.

Property Nondimensional value Value Unit
(373 1 1.67 x 1072 J
€y 0.52 0.8684 x 107 J
€5 50 83.5 x 107 J
off 1 0.34 nm
oyr 0.8 0.272 nm
Oy 0.72 0.247 nm
mys 1 6.63 x 10726 kg
m 4.8863 32.4 x 107% kg
T 0.7 85 K
o1 0.83 1.4 x 10° kg/m?
Do 0.0025 3.5 kg/m?
Os 2.6 21.45 x 10° kg/m?
T 55 1.87 nm

conventional Lennard-Jones 12-6 potential

OAB " OAB ¥
V() = dew (T) ‘(T) . e
ij ij

where r;; is the distance between atoms i and j, e4p is the
energy parameter representing the depth of potential wells and
o4p 1s the length parameter representing the effective atomic
diameter. Here AB are different combinations of particle
types; namely, fluid-fluid (ff), solid-solid (ss), and solid-fluid
(sf). The simulation parameters are summarized in Table I
with corresponding nondimensional “MD values” henceforth
denoted with an asterisk (as one can see, energy is scaled with
respect to €y, lengths with o and mass with my). To obtain
a 90° contact angle, we set e/’ﬁs = 0.52 and o, = 0.8. The
position of solid particles are fixed to reduce computational
cost. The time step is set to 0.0085 ps.

Transport properties of liquid argon are measured under
MD simulations, with parameters given by Table I. Shear
viscosity u = 2.44 x 107* kg/(ms) is calculated using the
Green-Kubo method [57]:

\% 00
m= 3ksT Z/o (Ipg(t)pg(0)) dt, (17)

where V is the volume, J,, are the components of the stress
tensor, and the sum accumulation of three terms given by pg
(=xy, yz, zx). Surface tension y = 1.52 x 1072 N/m is calcu-
lated from the difference between the normal and tangential
components of pressure tensor in a simple vapor-liquid-vapor
system (z direction) [58,59]:

L,
=3/ (Pzz(z) P +Pyy(z>])dz, (18)
2 Jo 2

where L, is the length of the simulation box in the z direction
and Py, Py, P.;, are the diagonal components of the pressure
tensor.

To set up the MD simulation we use the following proce-
dure: (1) a block of liquid argon is created in a periodic box
with dimension (L, Ly, ho), density p; and is equilibrated for
5 x 10° time steps with NVT at temperature T; (2) a block

of vapor argon is created in a periodic box with dimension
(Ly, Ly, 3ho) and density p, and then equilibrated for 5 x 100
time steps with NVT at temperature 7'; (3) platinum walls are
created with a face-centered cubic structure (fcc) of density
ps, each wall has five layers of platinum atoms with thickness
0.872 nm, the bottom wall then has dimension (L, Ly, 0.872);
(4) the equilibrated liquid argon is then place onto the bottom
wall with a 0.17 nm gap between the solid and the liquid
(the gap results from the repulsive force in the Lennard-Jones
potential and its thickness is found after equilibration) [38];
and (5) equilibrated vapor argon is placed on the top. The MD
simulation is then run with NVT at temperature 7. Figure 1
shows a snapshot of the MD simulation. Periodic boundary
conditions are applied only in the y direction. A reflective wall
is applied at the top boundary.

In our simulations, the position of the liquid-vapor inter-
face is determined using the number density and a binning
technique see [29]. We first calculate the number density of
each argon particle using a cutoff radius of 3.50. Particles
with number density above 0.5n* are then defined as liquid
particles and particles with number density below 0.5n* are
identified as vapor particles, where n* = 0.83 is the nondi-
mensional number density of a liquid argon particle in the
bulk. The simulation domain is uniformly divided into ver-
tical bins and the position of the free surface in each bin is
determined by taking the maximum of the heights of all liquid
particles inside the bin. Here we use bins with side length
1.50f inx and 1.40 iny. As aresult the free surface position
is projected onto a x-y mesh and expressed as a 2D array.

Three different film lengths are tested: Film 1 (L, =
13.04 nm), Film 2 (L, = 25.99 nm), and Film 3 (L, = 51.29
nm). The film width L, = 2.94 nm is chosen so that the MD
simulation can be consider quasi-2D. The initial film height
hy = 4.85 nm is chosen so that the film is relatively thin, but
yet does not breakup due to disjoining pressure [9,10,27]. The
equilibriation time ¢,, i.e., the time taken for all the waves to
fully develop from an initially flat interface, is estimated by
Eq. (A8), which is the characteristic time for the mode with
the longest wavelength (and thus slowest growth) to develop;
this varies with film length L,. Multiple independent MD
simulations (realizations) (Film 1: 10, Film 2: 10, Film 3:
20) are performed in parallel to reduce wall-clock simulation
time. Data are gathered after 7, every 4000 time steps and the
free surface position is averaged in the y direction, to provide
h = h(x, t) at each snapshot.

Figure 2 shows the standard deviation of the free surface
fluctuations, normalized by the thermal length scale I, ob-
tained from MD simulations and compared to our theoretical
predictions, Eq. (14); the agreement is excellent. The fluctua-
tion amplitudes of an unbounded film [i.e., adopting a periodic
boundary condition, Eq. (4)] are also provided. The relative
strength of thermal fluctuations of the film interface increase
with film length, as expected [18,26]. However, comparing to
Eq. (4) we can see that our expression predicts an enhanced
fluctuation amplitude to that of a periodic film everywhere ex-
cept at the center, x = L, /2, where they coincide. Physically,
this is because the replacement of periodicity with a fixed
contact angle permits additional (‘“half””) wave modes, i.e.,
of the form cos((2n — 1)wx/L,) forn =1, 2, ..., which con-
tribute to a larger amplitude everywhere except at x = L, /2,
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FIG. 2. Standard deviation of the fluctuations of films with 90°
contact angle (black: L, = 13.04 nm, blue: L, = 25.99, green: L, =
51.29 nm). MD results (dashed lines with circles) are compared
to our theory, Eq. (14) (solid lines). Results are normalized by
the thermal length scale /;. The dashed-and-dotted horizontal lines

are fluctuation amplitudes predicted by Eq. (4) for a periodic (un-
bounded) film.

where they are zero. Another interesting observation is that
the effects of boundaries propagate across the whole film,
regardless of the film length.

B. Partially pinned contact lines

Now we turn our attention to the case where the contact
lines are pinned onto the walls. The position of contact lines
can be restrained by chemical heterogeneity [54] or physical
defects [60,61]. However, in MD it is not possible to perfectly
pin the interface at a height 7 = hg, as thermal fluctuations
cause it to fluctuate, even if just mildly around the target
pinning height. Therefore, to compare MD and theory, we
must account for this and do so by modeling the contact line
as a Langevin diffusion process; as done in [49]. Then the
“partially” pinned boundary condition can be written as

h(0,1) = Ni(t) + ho, h(Ly,t) = Na(t) + ho. (19)

Here N;(¢) and N,(¢) are Langevin diffusion processes gov-
erned by

dN;

§=r = —kNi(0) + fil0), (20)
dN:

sd—f = —kNy (1) + fo(1), 1)

where & is the so-called coefficient of friction, k is
the harmonic constant, and fi(¢) and f,(¢) are Gaussian
noise functions that satisfy (fi(s)fi(tr)) = 2&kpTo(s — 1)
and (f2(s)f2(7)) = 2§kpT 8(s — 7).

From this model, the correlation of N has the form [62]

(NN () = "BTTe*?'H', 22)

0.00 0.25 0.50 0.75 1.00
X

FIG. 3. Wave modes ¢, (x) for a film with perfectly pinned con-
tact lines.

and when s = 7 Eq. (22) simply gives the variance of N as

) kgT
N7y ==~
By fitting the exponential curve of Eq. (22) and the variance
(23) to MD simulation data we can calculate k and .

Our problem in this case is then solving the STFE (2)
with the partially pinned contact-line condition (19) and the
impermeable side-wall condition (6).

(23)

1. Bulk modes
For a perfectly pinned contact line, the appropriate wave
modes (see Appendix B 1) are
@u(x) = sinh (1}/*x) + sin (1,/*x)
+ K[ cosh (a)/*x) —cos (A}/*x)]  (24)

with eigenvalues

2 4
xz(@) n=12..... (25)

As distinct from the 90° contact-angle case, the mode corre-
sponding to the Xy = 0 case also exists:

90(x) =x(l _ 1). (26)
Ly

Although ¢,(x) are not orthogonal, for odd » they are odd

functions around x = L,/2 and for even n they are even

functions around x = L,/2. We will exploit this property

to simplify the calculation for fluctuation amplitudes later.

Figure 3 provides an illustration of ¢, (x).

2. Decomposition of fluctuations

The partially pinned contact-line boundary condition is
a linear combination of the perfectly pinned condition and
the Langevin diffusion condition. This suggests that under
linearization the free surface can be decomposed as

h(x’t) =h0+h2(x’t)+h3(x’t)’ (27)
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where Ay is the initial position of the contact line and &, (x, 1),
h3(x, t) are small perturbations. Applying this to Eq. (2), at
the leading order (hy ~ h3 ~ N < hg) we obtain

3h2 + 3h3 N yhg 34}12 + 84h3 T 2kBTh8 3N
ot ot 3w\ axt  axt 3uL, dx’
(28)
and the boundary conditions in Eq. (6) and Eq. (19) become

hy(0,1) 4+ h3(0,¢) = N (1), (29)
hy(Ly, 1) + h3(Ly, 1) = Na(2), (30)
83h2 33h3

= 0,1) + o 0,1) =0, 3D

33 hy 33h,
W(Lx,t) + ﬁ(Lx,t) =0. (32)

This is actually a linear combination of two smaller problems,
one with a noise-driven bulk and pinned contact lines

oh h} 3*h 2kgTh d
I _ YoM, B Oﬂ, (33a)
ot 3 Ox* 3uL, dx
h2(0,1) = ha(Ly, 1) =0 (33b)
3%h, 3h2
-5 0,1) = — (L, 1) =0, (330)
ax3

and the other with determmlstlc equations in the bulk and
noise-driven contact lines

3h3 _ ]/hg 34h3

O _YRIM (34a)
ot 3u ox4
h3(0,1) = Ni(2), h3(Le,t) = Na2(2), (34b)
93 h3 9%h
——= 0,1 = (Lm 1) = (34¢)

We can then solve Egs. (33) for hy(x, t) by decomposing it
into wave modes ¢, (x),

hy =) cult)pu(). (35)

n=1

where c,(t) are wave amplitudes that can be expressed ex-
plicitly (see Appendix B 2). Similarly h3(x,t) can also be
decomposed into wave modes ¢,(x) and boundary modes,

N
ha(x, 1) =Y en(t)pa(x)

n=1

o= ) (12 al
1 L. L. MloLx

+N2(I)L%[L% - M20<1 - Lﬁ)] (36)

where e,(¢) are wave amplitudes with explicit expressions,
and u;o and uy are constants that are given in Appendix B 3.
Note, only N wave modes are considered for /3 (x, t), opposed
to infinitely many wave modes considered for A, (x, t). This
is because the wave modes are not orthogonal to each other,
so when solving the linear system for e,(¢), matrix G is
nondiagonal, and it would be impossible to take its inverse if

the dimension is infinite (see Appendix B 3). We can confirm
numerically that this does not affect our results (the fluctuation
amplitudes converge), and in Sec. IV we show that a cutoff on
the number of wave modes is actually preferable.

3. Thermal-capillary-wave theory

We can obtain the fluctuation amplitude for h, using
thermal-capillary-wave theory. Similar to the 90°-contact-
angle case, we substitute Eq. (27) into Eq. (11) and use the fact
that the d¢,/dx are orthogonal (see Appendix B 1) to obtain

LL
)/ == Z Al/z 2 + =+ other terms, 37

where the first term on the right hand is the change of surface
area due to h, and the other terms are the change of surface
area due to h3 and cross terms of A, and h3. Applying the
equipartition theorem to the A, only terms we find

211

Using the fact that (c,,c,) = S {c
nally, we have

) (see Appendix B 2), fi-

o P2(x

<h2( ) TLL Y

(39)

Note, alternatively one can derive (c2) directly from the
STFE, which includes time dependence,

kT 1 1

2\ _ B~ - - _ —
() = y LxLykl/z[1 exp(=2Ch0)], - (40)

where C = yh /(3r) (see Appendix B 2). At thermal equilib-
rium this agrees with Eq. (38).

4. Combined fluctuation amplitude

The fluctuations combine to give a total variance of
((ha + h3)?) = (h3) + 24hahs) + (3). (41)

where (h%) is the fluctuation of the bulk, already calculated
via thermal-capillary-wave theory, and (43) is the fluctuation
of the film originating from fluctuations of the contact lines.
Notably, since the random variables N (x, t), f1(z) and f>(t)
are uncorrelated, (hyh3) = 0 (see Appendix B 4). An expres-
sion for (h%(x)), obtained from Eq. (B89), can be found in
Appendix B 4.

5. Molecular-dynamics simulations

The MD simulations are the same as in Sec. [l A2 with
the exception that we need to pin the contact line. There
are several ways to achieve this, for example, by using topo-
graphical defects on the solid substrate [63], but here we use
the technique described by Kusudo et al. [64] using chem-
ical heterogeneity. As shown in Fig. 4, this is achieved by
using a hydrophilic wall (blue) beneath the film’s equilib-
rium height (o) and a hydrophobic one (red), which is less
wettable, above it. The wettability of the walls are tuned by
changing the interaction parameters between solid and liquid,
€571 and €7 [49]. This results in the position of the contact
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(2)

hydrophobic

hydrophilic

(d)

——  (aussian fit
B MD data

—_

probability density

)
()

4.0 45 5.0 5.5
contact line position nm

FIG. 4. (a)—(c) MD snapshots in a region near the contact line
and the chemical heterogeneity of the solid wall, showing the posi-
tion of the contact line below, on, and above the proposed pinning
point respectively. Blue particles denote hydrophilic wall atoms and
red particles denote the hydrophobic wall atoms. Liquid argon atoms
are in yellow. (d) A histogram of contact line position extracted from
a single realization of MD simulations.

line following a Gaussian distribution with mean hy, when
in thermal equilibrium, as can be seen from Fig. 4(d). The
variance depends on the equilibrium contact angles (i.e., on
the €,’s) of the walls and a small variance is preferable to
mimic perfect pinning. Our choice of parameters are shown in
Table II.

Four different film lengths are tested: Film 4 (L, =
13.04 nm), Film 5 (L, = 25.99 nm), Film 6 (L, = 51.29 nm),
and Film 7 (L, = 102.30 nm). The film width L, = 2.94 nm
and the initial film height iy = 4.85 nm are the same as in the
90° contact-angle case. The equilibration time f. can be esti-
mated from Eq. (B9). Multiple independent MD simulations
are performed (Film 4: 18, Film 5: 10, Film 6: 10, and Film
7: 20).

TABLE II. Simulation parameters and their nondimensional val-
ues (reduced units based on Lennard-Jones potential parameters) for
pinned contact lines.

Property Nondimensional value Value Unit
€11 0.05 0.0835 x 107 J
€52 0.62 1.0354 x 1072 J
Osf1 0.8 0.272 nm
Osf2 0.8 0.272 nm

2.004 ——o-— MD - periodic

—— pinned

0.00 0.25 0.50 0.75 1.00
x/L,

noise-full - noise-bulk

noise-CL

FIG. 5. Standard deviation of fluctuations for the films with
partially pinned contact lines (black: L, = 13.04 nm, blue: L, =
25.99 nm, green: L, = 51.29 nm, red: L, = 102.30 nm). (a) A com-
parison of MD (dashed lines with circles), theory via Eq. (41) (solid
lines), and the classic thermal-capillary-wave theory for periodic
films (dashed lines) predicted by Eq. (4). (b) The decomposition of
theory (41), where the dashed lines represent the amplitudes of fluc-
tuations caused by thermal noise in bulk, the dotted lines represent
the amplitudes of fluctuations caused by noise on the contact lines,
and the solid lines represent the full fluctuation amplitudes.

Figure 5(a) shows the fluctuation amplitudes of the free
surface obtained from MD simulations using bins with side
length 1.50¢ in the x direction and 1.40/y in the y direction,
which agree well with the theoretical predictions, Eq. (41).
Notably, the largest difference between the MD and theory oc-
curs for the shortest films; an effect we will revisit in Sec. IV.
One can see that the fluctuation amplitudes of films with
partially pinned contact lines have a saddle shape with one
trough and two crests, symmetric about x = L, /2 as we would
expect. In contrast to the previous case of a fixed contact
angle, here the fluctuations are almost everywhere lower than
those for a periodic film. The amplitudes dip significantly at
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the wall, due to the pinning effect, but do not reach zero due
to the oscillations around the pinning position. Moreover, the
positions of the trough and the crests relative to the length
of the film are fixed, showing again that the boundary effects
propagate across the film. Last, as suggested by our theory
(41), the fluctuation amplitudes of the free surface can be
attributed to the thermal noise in the bulk v/ (h%) and the fluc-
tuations of the contact line v/ (hg) From the decomposition of
fluctuation amplitudes shown in Fig. 5(b) one can see that the
effect of contact line fluctuations is limited to the region near
the boundaries and clearly in this regime the bulk fluctuations
are stronger than the contact-line-driven motions.

III. 3D CIRCULAR BOUNDED THIN FILMS

Let us now extend our investigation to 3D bounded
nanofilms. In three dimensions the position of the free surface
h(x, t) is given by the lubrication equation (LE) [65] as

oh

14 3y o2
2 LV (WVV2h), 42
» 3 ( ) (42)

and its stochastic version [38,40,41] is

oh 2kgT
Do Vv v+ [y PN, (43)
dt 3u 3w

with thermal noise uncorrelated in space and time:
Nix, NG 1) = 8;;8(x —x)8(t — 1) (44)

As in quasi-two dimensions, thermal fluctuations drive
nanowaves on the free surface. When periodic boundary con-
ditions (i.e., an unconfined film) are considered on a square
domain of length L the perturbation 8% to the average film
height can be decomposed into Fourier modes and the fluctu-
ation amplitude is given by

zoooo

=LY ) = m2 — (45)

m=1 n=1

where m and n are wave numbers in the x direction and the
y direction. Unlike quasi-two dimensions, this summation is
unbounded and therefore an upper limit to the wave numbers
m and n is required. A natural choice is to consider a “cutoff”
length scale £., such that wave modes with length scale less
than £, are ignored [47,66]:

2 m<L/l. n<L/¢.

8h2 77.'2 Z] Z m2 +n2 (46)

n=1
A discussion on the significance of the requirement for a
cutoff length scale is provided in Sec. IV. If L/¢, > 1, which
is not unreasonable given ¢, will be on the molecular scale,
the summation (46) can be approximated by

L
(8h*) ~ IZ1n o 47
showing a logarithmic growth of the fluctuation amplitude
with the length of the domain L. This growth, although much
slower than the linear growth in Eq. (4) for the quasi-2D peri-
odic boundary case, is nevertheless unbounded as L — oo.

contact line

FIG. 6. An illustration of the geometry of the 3D circular thin
films (half to show cross section).

Let us now consider how the analysis is modified when we
have confined 3D films. In particular, we choose to confine
liquid films in circular domains by solid walls as illustrated in
Fig. 6. As in quasi-two dimensions, we apply two different
boundary conditions: (1) 90° contact angle and (2) pinned
contact line.

A. Prescribed angle at 90°

It is natural to conduct the analysis in cylindrical coordi-
nates (r, 6, z), with a thin film h = h(r, 6, ) of equilibrium
height %y confined by an impermeable wall at » = a. Then a
prescribed 90° contact angle corresponds to

oh
— =0, 0¢€]l0,2m). (48)
ar

r=a

and impermeability of the wall is

VVeh|,—y-#=0, 6 €][0,2n). (49)

The impermeability condition corresponds to a projection of
the flux onto the direction normal to the wall, given by 7,
which is a unit vector in r.

Linearizing the 3D LE, Eq. (42), and solving the eigen-
value problem with the above boundary conditions [Eq. (48)
and Eq. (49)], we obtain the following wave modes (see
Appendix C 1):

Y, (r,0) = cos(nf) xu.a(r), (50)
Y, (1, 0) = sin(nf) xp.qo(r). (51)

Here
Xna(r) = J(wpar), n=0,1,..., (52)

are the wave modes in r. J, is the nth Bessel function of the
first kind. The dispersion relation

J(wa)=0, n=0,1,..., (53)

where the prime denotes a derivative, is derived from solv-
ing the eigenvalue problem; from the dispersion relation we
obtain the frequencies {w, ¢ = 1,2, ...}. Figure 7 gives an
illustration of y, ,(r) with different n and «. One can see that
the 90° contact-angle condition is satisfied. As n increases the
position of the first crest gets further away from the origin
and there is an expanded region in which the wave mode’s
amplitude is negligible.
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1.0

0.81

0.61

0.41

Xn,o (T)

0.21

0.01

—0.21

—0.41

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 7. Wave modes x,,(r) for the circular-bounded 3D film
with 90° contact angle. n is the wave number in 0, and « is the wave
number in r. & = 2 for black lines, and « = 5 for red lines.

1. Thermal-capillary-wave theory

The free surface can be written in terms of the wave modes:
h(r,0,1) = ho + ha(r, 6, 1), (54)
where the perturbation /4 is
ha(r.0.0) =Y Y [Ana(®)T) 4 (1 0) + Buo ()Y} (1. 0)].
n=0 a=1
(55)

Then we can calculate the energy of a perturbed surface (see

Appendix C2)
1 [an\?
7(@) rdrdf — 7Ta2
-

s [
2L >2+é<%>w

o0 oo
)/7T 2
— A S0. —_— B Spas (56
yﬂ; 0,270, 2 ;; + ’ ( )
where
Sue = 1020 — 1) (00 57)

Since the wave modes are orthogonal to each other (see
Appendix C2) and the energy is quadratic in the amplitudes,
we can use the equipartition theorem to give

kgT

- —VSOa(AM) (58)
and
kT _ ym _ YT g
7= 2 Sna( M)— > Sna(Bi o) (59

so that the (position-dependent) variance of fluctuations is
given by

kgT 1 1
(h3(r,0)) = KBl [meéa(;’)

y 1

+ZZ

n=1 a=1

(r)] (60)

Note that the variance is only r dependent, since periodicity
in 6 eliminates variations.

Asymptotic analysis shows that S, , increases with n lin-
early (see Appendix C 2). So the summation over n in Eq. (60)
diverges as n — oo and a cutoff for smallest length scale £,
should be introduced, as we’ve already seen for the periodic
(i.e., unbounded) 3D film (46).

Applying a cutoff length scale in polar coordinates is non-
trivial, as the modes in the r and the 6 directions differ, in
contrast to the Cartesian case, and the radial wave modes have
nontrivial form. To do so, we define the length scale of a wave
mode f, o(7,0) as

MaXx,e(0,a],0€0,27] | fn,a (7, 6)
mMax,efo,a1.00.271 |V foa (1, 0)1
where || is the absolute value and V is the gradient operator.
For simplicity, we denote the length scale of the wave mode

for the 90° contact-angle case as Lgf)a = L(T,}’a ), and one

can easily check that £(Y, ,) = L(Y} ). We then introduce
a threshold function

L(foa) = (61)

1, if Lgoa > L,

, 62
0, if L)% <, (62)

7%, n, ) = {

to identify wave modes with length scale greater than a chosen
£.. Finally, we apply the cutoff to Eq. (60)

) kT 1| o~ 2, 0,0)
(h4(r’9)> - y T [O; ZSO,a Oot( )
Z9O(€c,n o) 2
P D ] )
n=1 a=I

which regularizes the unbounded sum. The effect of cutoffs
will be further discussed in Sec. IV.

2. Molecular-dynamics simulations

The setup of the MD simulations is very similar to before,
except for geometry. The cylindrical side wall is joined by
a circular base, all five layers of platinum atoms in fcc, to
form a “cup.” An equilibrated 4y = 2.5 nm thick argon liquid
film is then placed on top of the base with a 0.17 nm gap,
as in Sec. I A2. Equilibrated argon vapor is then placed
on top of the liquid. Nonperiodic boundary conditions with
reflective walls are applied at the top, as a result the vapor
cannot escape the cup. Figure 8(a) gives a snapshot of the MD
simulation.

The position of the free surface is measured using the
number density and binning technique, with a circular mesh
used to reduce errors near the wall. Calculation of number
density and identification of liquid argon particles are the
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FIG. 8. Snapshots of MD simulations for a 3D circular film.
(a) The cross section. (b) The top view with the circular mesh used
for extracting the free surface position.

same as for quasi-two dimensions. To define the vertical bins,
we (1) choose the number of layers NV, (2) create a center bin
as a circle with radius r,, = a/(2N; — 1) and area Jrr,%l, 3)
ensure bins in the other layers are rings with width of 2r,,,
and (4) divide each ring equally into tiles such that the area of
each tile is also 772 . Figure 8(b) shows an illustration of the
circular mesh with Ny = 12. The characteristic length scale
of the mesh is given by the square root of the area of the tiles
L, = /mr.

The parameters for the MD simulations are still given in
Table I, and we confirm that the average contact angle remains
at 90°. Films with two different radii are tested: Film 8 (a =
11.81 nm), and Film 9 (a = 23.39 nm). The average height &g
of the free surface is measured to be 2.47 nm.

The fluctuation amplitudes extracted from MD simula-
tions are averaged over 6 since they are only r dependent.
Figure 9 shows the fluctuation amplitudes of 3D circular
bounded films with a 90° contact angle (normalized by the
thermal length scale I7) obtained from MD simulations and
compared with the theoretical prediction (63). The smallest
length scale allowed in the theory is chosen to be £, = oyr
and the length scale of the circular mesh for MD is cho-
sen proportionally L,, = 1.77¢. (i.e., r,, = o). One can see
that the MD results agree well with Eq. (63) for both films,
while the agreement improves as the film gets larger. The
MD results indicate that similar to the quasi-2D films with
90° contact angle, the minimum of the fluctuation amplitude
is found at the center of the film. This is because the first
crest of wave modes for n > 1 get pushed farther away from
the origin as n increases, shown in Fig. 7, distributing less
energy to the center and more energy towards the bound-
ary. One can also observe oscillations in the theory near
the origin, which is absent in MD simulation results. This
could indicate that a better cutoff mechanism is needed near
the singularity (r = 0), or MD resolutions may need to be
increased to capture the oscillation; both worthy of future
investigation.

G-0-0-0-C"

0.0 0.2 l . 0.8 1.0

FIG. 9. Standard deviation of fluctuations for 90° contact-angle
3D circular films with two different radii (black: ¢ = 11.81 nm, red:
a = 23.39 nm). MD simulation results (dashed lines with circles) and
theory (63) (solid lines) are normalized by the thermal scale 7.

B. Pinned contact lines

Next, we consider the case where the contact line is pinned
onto the wall. As mentioned in Sec. II B, in practice the con-
tact line will always oscillate in MD simulations. However,
due to the complexity in three dimensions, and the relatively
less prominent influence of contact line fluctuations previ-
ously observed, the theory we develop will consider only
the contact line being pinned perfectly onto the wall. It will
be interesting in future work to explore the oscillation of
the contact line in three dimensions. The pinned contact-line

boundary condition for the 3D circular film is given by
h(a,0)=hy, 0 €]l0,2m]. (64)

Together with Eq. (42) and Eq. (49) we can obtain the appro-
priate wave modes (see Appendix D 1)

W, (r,0) = cos(nd) Yy a(r), (65)
Wy (r,0) = sin(nd) ¥, o (r). (66)
Here
. _ In(nea) .
1pn,oz(r) = Jn((n,ar) In(Cn,aa) In(gn,otr)a n=0,1,...
(67)

are the wave modes in r. I, is the nth modified Bessel func-
tion of first kind. The frequencies {¢,, :a =1,2,...} are
obtained from a dispersion relation

2ndy(Ca)l,(Ca) + SalJy(E a1 (§a) — Jnp1 (Ea)ly(Ea)] = 0,
(68)

derived from the eigenfunction problem. Figure 10 gives an
illustration of ¥, o(r) with different n and «. The pinned
boundary condition is satisfied and the distance between the
origin and the first crest still increases with .
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FIG. 10. Wave modes v, ,(r) for the circular bounded 3D film
with a pinned contact line. n is the wave number in 0, and « is the
wave number in r. @ = 2 for black lines, and @ = 5 for red lines.

1. Thermal-capillary-wave theory

If we perturb the free surface from the mean profile /o we
obtain

h(r,0,t) = ho + hs(r,0,1), (69)

where the perturbation hs(r, 6,¢) can be decomposed into
wave modes:

hs(r,0,0) =Y Y [Coa)¥,) (1, 0) + Dy (W7, (1, 0)].
n=0 a=1
(70)

Following the same procedure as before, we find that the

energy required to perturb the surface is given by (details see
Appendix D 2)

[e.¢]
E=yr Y A} KOQ+%ZZ (C2 4+ D2, K
a=1

n=1 a=1
(71)
where
1 2 2

Kn,a = za)n,aa _Jnfl(a)n,aa)JnJrl(wn,zxa)

VA )
+Infl(wn,aa)InJrl(a)n,aa)z— . (72)

I (wn0a)

Assuming the wave modes are uncorrelated, we can apply the
equipartition theorem:

kgT

- = Y Ko.o(CJ a): (73)
keT _ Y7 o2\ Vg ip2
=5 K..(C2,) = 5 Kio(D; o). (74)

to find the variance of the fluctuations:

5 ksT 1
(h3(r,0)) = . [;
+ ZZ

n=1 a=1

5o (r) (75)

Iﬂn a(r)} (76)

The value of K,, , increases with n linearly (see Appendix D 2)
so that, as expected, the fluctuation amplitude diverges and a
cutoff for length scale €. should be introduced. The length
scales of the wave modes for the pinned case are again cal-
culated by Eq. (61) and now denoted by L}, = L(¥, ,) =
L(W? ). Introducing the threshold function

1, if LE, > ¢,

Zp(gcv n, C() = {0 lf Ll[;Ol < Ec’ (77)

and we can write the regularized sum as

kpT 1| o ZP (L, 0,
P o) === [Z 20 o )
a=1

T 2K0.rx

+ZZZ (Lo “)w,m( )} (78)

n=1 a=1

The choice of cutoffs will be further discussed in Sec. IV.

2. Molecular-dynamics simulations

The geometry of the MD simulations is set and the position
of the free surface is measured using the same methods de-
scribed in Sec. III A 2. MD parameters from Table II are used.
The rest of the MD settings are the same as in Sec. 11 A 2.
Films with two different radii are tested: Film 10 (a =
11.81 nm) and Film 11 (¢ = 23.39 nm).

Figure 11 shows the spatial variation of fluctuation am-
plitudes of the 3D circular films with a pinned contact line.
The figure compares the theoretical predictions of the fluctua-
tion amplitudes (78) (by setting cutoff length scale £, = oy)
with the MD results (obtained with a circular binning mesh
of characteristic length scale L,, = 1.77¢.); again the overall
agreement is very good, with improvements for larger films.
The theoretical predictions also exhibit oscillations near the
origin, whereas the MD results do not. This might suggest a
singularity in the solution is requiring better cutoff mecha-
nism, or a low MD resolution failed to detect the oscillations,
as stated in Sec. III A2. Similar to the quasi-2D films with
partially pinned contact lines, the MD results exhibit a trough
at the center (r = 0 and x = L, /2) and a crest before reaching
the boundary.

IV. DISCUSSION OF MINIMUM LENGTH SCALES

We have seen that our theoretical models for 3D films
require a minimum length scale to be defined in order for
predictions to be made; a length-scale “cutoff” is needed. For
the results presented, where we have compared to molecular
dynamics, this cutoff chosen on a physical basis, coinciding
with the Lennard-Jones length-scale parameter osr. Willis
etal. [31] observed, in MD simulation, rapid attenuation of the
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FIG. 11. Standard deviation of fluctuations for pinned contact-
line 3D circular films with two different radii (black: ¢ = 11.81 nm,
red: a = 23.39 nm). MD simulation results (dashed lines with cir-
cles) and theory (78) (solid lines) are normalized by thermal scale
lT~

fluctuation strength of thermal capillary waves (on a 2D film)
at scales beneath o/, and so this was a natural first choice.

However, in the case of MD, there is another length scale
that might influence the results: the bin size over which mea-
surements are spatially averaged. A more sophisticated choice
of cutoff for our theoretical model should, then, be either bin
size or osp, whichever is larger. Up to now, coincidentally,
they have been equal. To test if predictions from MD are
indeed modified by the bin size when it is larger than oy,
and that our theoretical model with an appropriately adjusted
cutoff predicts this, we have performed the data processing
presented in Fig. 12. It shows that, indeed, the overall fluctu-
ation strength of the film in MD is influenced by the choice
of bin size, and that this is well captured by the theory with
a bin-size cutoff. Unfortunately, we were unable to perform
simulations with bin sizes smaller than of, as done in Willis
et al. [31], where we might expect the effect of bin size to
disappear, revealing a minimum scale comparable with os.
We leave this for clarification in follow-on work.

As these results indicate, be it physical (o) or numerical
(bin size), the results from MD are affected by a minimum
length scale. While we originally introduced the “cutoff” out
of necessity for a bounded sum in our theoretical model for
3D films, this discussion implies that introducing a cutoff in
the theoretical model for quasi-2D films should still improve
the comparison with MD. This comparison is made in Fig. 13,
and indeed there is a small but noticeable improvement in
agreement.

V. CONCLUSION AND FUTURE DIRECTIONS

In this article, we have uncovered the behavior of confined
nanoscale films in thermal equilibrium. These results, in par-
ticular the spatial dependence of the fluctuation amplitude,
could be validated experimentally, using either scattering

T nm
(b)
0.8
0.6
&~
=
S 041
0.21
0075 10 20
T nm

FIG. 12. Standard deviation of fluctuation of 3D circular film
with radius ¢ = 23.39 nm and different boundary conditions: (a) 90°
contact angle and (b) a pinned contact line. Theoretical predictions
(63) and (78) with different cutoff length scales €. = o, 204, 30y
are given by solid lines. The circled lines are MD results obtained
using different bin sizes L,, = 1.77¢...

techniques [19-21] or colloid-polymer mixtures to enable
optical measurement [22]; quasi-2D results could be approx-
imated using Hele-Shaw-type geometries while 3D domains
are the norm. Furthermore, the techniques used could be ex-
tended to tackle a range of other nanoscale flows including
free films, drops, or bubbles.

Our findings serve to further highlight the accuracy of
fluctuating hydrodynamics to describe nanoscale fluid phe-
nomena, or, put another way, to reproduce effects seen in
molecular simulations at a fraction of the computational
cost. Moreover, the results presented could provide useful
benchmarks for computational schemes intended at describing
nanoscale flows and give insight into the choice of cutoff
used to regularize the singular noise terms in the stochastic
partial differential equations, which can be achieved either
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FIG. 13. Comparison of fluctuation amplitudes for quasi-2D thin
films extracted from MD (circled lines), theoretical predictions con-
sidering a cutoff (crossed lines) and without a cutoff (solid lines).
(a) 90° contact angle, (b) partially pinned contact lines. Black:
L, = 13.04 nm, blue: L, = 25.99 nm, green: L, = 51.29 nm, red:
L, =102.30 nm.

using projections onto regular bases [41,46] or just be crudely
based on the numerical grid size.

Notably, in many cases one is interested primarily in the
stability of nanovolumes. For thin films [13], the importance
of thermal fluctuations has been established [16], but the re-
lation to nanoconfinement is yet to be determined; this could
also be a direction of future research.

The data that support the findings of this study are openly
available in figshare [69].
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APPENDIX A: QUASI-2D THIN FILM WITH 90°
CONTACT ANGLE

In this Appendix we lay out the technical details for the
quasi-2D thin film with 90° contact angle.

1. Derivation of the wave modes

The surface wave can no longer be decomposed into
Fourier modes since the boundary conditions are not periodic.
To find appropriate wave modes, we first linearize the lubri-
cation equation (1) and then solve the eigenvalue problem.
Consider a perturbation to the free surface of the form

h(x,t) = ho + eh ()T (t), (Al)

where we anticipate that the perturbation is separable in time
T (t) and space hj(x), the steady state is a flat free surface
h = hy and € < 1. Apply this to the lubrication equation (1),
at the leading order we obtain a linear problem

1dT yhd d*h .
T dt  3ph dx*
where w is a constant and must be positive for stability. This

gives an eigenvalue problem for &;(x) with corresponding
boundary conditions

—o, (A2)

d*h 3uw

W=Oh1, U=y—h(3)207 (A3)
dh dh d*h d*h
e} _&n &M _«£™ (A4)
dx x=0 dx x=L, dx3 x=0 dx? x=L,

Solving the eigenvalue problem gives the appropriate wave
modes

¢ (x) = cos((0,)"*x),

where the associated eigenvalues are

nm \*
a,,:(—), n=12,.... (A6)

Solving Eq. (A2) for T'(¢) we get

n=1,2,..., (AS)

vh
T =Tyexp(—wt) =Thexp | —o 3—t , (A7)
7

which gives us an estimate of how fast the perturbation decay
and how long it takes for the wave modes to equilibrate.
The wave mode with longest length scale takes longest to
equilibrate

3u

N —. A8
Vo (A8)

e

In this subsection we (1) derived the wave modes for the
quasi-2D 90° contact-angle case and (2) evaluated the time for

015105-13



LIU, ZHAO, LOCKERBY, AND SPRITTLES

PHYSICAL REVIEW E 107, 015105 (2023)

the wave modes to equilibriate, which guides us to the runtime
of MD simulations.

2. Fluctuation amplitude from the STFE

Applying Eq. (8) to the STFE (2), at the leading order we
obtain

o0 o0

d day it 2kpTh 3
E Gn _ VT n*a,d, + 5 O—N.
o 3uLy = 3uL, Ox

(A9)

The noise is then expanded in the wave modes ¢, =
sin(nmx/L,), so that

N@, 1) =" buO)fn(x),

m=1

(A10)

and using the orthogonality of the ¢’s and noting that
fy 2dx = L./2 we find

(Al1)
|

2 (L
bm:_ m dx.
Lx/O GmN dx

This allows us to write an equation for each mode

dan ¢n
‘pn = —C}’l an$, + Db,
dx’

(A12)

h34
YT and B =

where we have introduced constants A = e

3
2]3(,’1 TLf"’ We can then rewrite Eq. (A12) using an integrating

factor to find

. dé,
A ’bnd—"i. (A13)

d N
%Eww)—B

Integrating both sides with time and assuming that the initial
film is flat, i.e., a,(0) = 0, we have

dé, [
Buain _ et dn / ATh (1) dr, (A14)
dx 0
and noting d¢” = 7 ¢,, we find
B t
a,(t) = LL”e—A"“ / A Th (1) d. (A15)
x 0

Next, using Eq. (3) and Eq. (A11) we determine the prop-
erties of the noise coefficients

(b (T)ba(5)) = &X/(Mnmxnwﬂj muwusm0>

4 L - 2
= — / / @n ()P, (XN (x — X )8(z — $)dxdx' = —8(t — ), (A16)
L,% 0 0 L,
from which we finally obtain
—2An —2An*
{az) = 2hine / aite g _ B2 — e ) (A17)
L3 0 An’L}
This gives a time-dependent version of (a2), and as t — 0o (i.e., we approach thermal equilibrium) we have
2kpT L, 1
(@)= =252, (A18)
ym? Ly n?
which agrees with the result from thermal-capillary-wave theory (13).
We can also show that (a,,a,) = Sm,,(aﬁ),
t t
(@ (D)aty (1)) = D€+ / f IO (8)bu(T)) ds d, (A19)
o Jo
where
(b ($)bu(1)) = < (/ G (ON (x, S)dX> </ (X IN (¥, T)dX>>
4 (L L - _
= <ﬁ / / N(x, N (', T)¢m(X)¢n(x/)dxdx/>
x Jo Jo
4 (L ke - -
= / f (NG N, 1)) () (x) dx dx’
o Jo
28(s—r) ,_20(s—1)
= ¢m(x )pu(x) dx’ = L—(Smw (A20)

This shows that the wave modes are uncorrelated and is requ1red in the calculation of Eq. (14).

In this subsection we showed that (1) the amplitudes of the wave mode (aﬁ) can be derived directly from the STFE as a
function of time, which agrees with thermal-capillary-wave theory at thermal equilibrium (as t — c0) and (2) the wave mode
are uncorrelated, which is an requirement for the calculation in Eq. (14).
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APPENDIX B: QUASI-2D THIN FILM WITH PARTIALLY
PINNED CONTACT LINES

In this Appendix we lay out the technical details for quasi-
2D thin film with partially pinned contact lines.

1. Derivation of wave modes

The partially pinned boundary condition given by Eq. (19)
states that the contact lines oscillate around the pinned point
hy. However, first we derive the wave modes with perfectly
pinned boundary condition with the contact lines pinned at
hg. After the same linearization as in Appendix A 1 we arrive
at the eigenvalue problem with pinned and no-flux boundary
conditions

d*h,
——= = Ahy, Bl
I 2 (B1)
1) = L = T2y = o B
N P P T
The eigenvalue problem gives a general solution [67]
ha(x) = C; cosh(A*x) + C, sinh(1"/*x)
+C5 cos(A/4x) + Cy sin(A/4x), (B3)

where C;—C; are constants to be determined. Substitut-
ing in the boundary conditions gives the appropriate wave

J

modes

@n(x) = sinh (A)/*x) + sin (A}/*x)

+ K[ cosh (1)/*x) —cos (A}/*x)],  (B4)
where
_ (sinh (AY*L,) + sin (AY*Ly)) ' E5)
(cos ()\,'/4LX) — cosh ()»,17/4LX))
The eigenvalues A, must satisfy
cosh (AL/*L,) cos (AY*L,) = 1, (B6)
which gives us an estimate
An%<w>4, n=1,2.... (B7)
Ly
And for Ly = 0, we have
po(x) = Li(l - %) (BS)

Similar to Appendix A1 we can estimate the equilibration
time 7. by looking at the wave mode with longest length scale
apart from 0:

3p

. B9
R (B9)

le

Although the wave modes are not orthogonal, their first

derivatives are, so that we are able to make analytic progress.

To show this, let the prime denote 9 /dx, then using integration
by parts repeatedly we can show

Ly Ly Ly L
o [ nde= [ airadr=telt v [ ateias =16l - ot + [ eiiel ds
0 0 0 0

Ly
=o' 0, — omon + omen o — f P, dx
0

" .1 " "

= [(pm Pn = PP + Cnbn — (p:n(p

Ly
= Ay / @0, dx,
0

where all the boundary terms vanish due to boundary condi-
tions. Since A,, # A,, we have shown that ¢’ are orthogonal.

In this subsection we (1) derived the wave modes ¢, for
quasi-2D thin films with partially pinned contact lines, (2)
derived the time for the wave modes to reach equilibrium, and
(3) showed that ¢, are orthogonal, which is used in derivation
of Eq. (37).

2. Fluctuation amplitude from the STFE

Similar to before, we would like to derive the mean square
displacement directly from the stochastic lubrication equa-
tion for h,. Considering a perturbation and expanding it in the
derived wave modes gives

h=ho+ ) ca®pn).

n=0

(B11)

L.’(
1Ly oo
]0 + /(; PinmPn dx

(B10)

(

Using similar arguments and noting that ¢* = 1,¢, we find

>, dec, b 2kgTh3 ON
§ ©n = - Y% E )‘ncn(pn + 5 0 5
; dt 3u o 3ul, ox

n=

(B12)

Note that 1y = 0, this is why the second term begins with n =

1. To continue we need to expand the noise in some basis as

well. Since there is already a first derivative in space on N we

expand the noise with ¢, = ¢,’. Note that ;" = 0,50 @y = 0.

So we can write the noise in terms of the basis
o0

N@ =Y dut)pn(x), (B13)

m=1
and using the orthogonality of @,, and noting that fOL * P2 dx =
L, we have

1 (b
d, = —/ PN dx. (B14)
Lx 0
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We can then rewrite Eq. (B12) in each mode as

D Cnenon + Dy 1P (B15)
n - nCn®n n )
Onar ¢ d
where we have introduced new constants C = };—’5 and
D— 2 TH F h
=/ S, - For ¢o we have
dC()
— =0, B16
7 (B16)

and since the average free surface is flat we have cp = 0. We
can then solve the ordinary differential equations for n # 0 as
before to get

d— t
PnCn =De’c’\”’% / M, (v)dr.
0

(B17)
Noting % = A/%g,, we have

t
cpn = DAMAemCht / eMTd, (1) d. (B18)

0
Following Eqgs. (3) and (B14) we find that

L[
(dn(T)dn(5)) = <E</(; PN (x, f)dX>

X

L
X </ (E,,(x’)./\/'(x’,s)dx’>>
0

1 L, L,
= ﬁ /0 /(; @n(x)%(x/)

x §(x —x)8(t — s)dxdx

1
= —4(t — ).

o (B19)

So we can write

t
() = <D2x}/2€—2w /0 ¢Md,(t)dt

t
x/ eCk”sdn(s)ds>
0

D2(1 _ 672C)~,,t)
C2LCAY?
kT 11

___(1 _ e—ZCA,,Z)’
v LiLy 3 \?

(B20)

and ast — o0
ksT0 1 1
(2 = B_—l—/z. (B21)
v L.Ly ),

Similarly we can also show that

8(s—1)
L,

(din(s)dn(T)) = Smns (B22)
and so

(C,,,(I)C,,(t)) — <D2)\,:n/4)\1,11/4e_C(Am+kn)l

t t
x / f T g (s)d,(T)ds dt>
0 0

DA
=

t
x / eC(M-Hn)T S dT
0

o~ COmthnt

B Dz)»,171/4)»,11/4(1 — e COmtrnty
N L,C(n + )

Omn,  (B23)

as expected.

In this subsection we (1) derived the amplitude of the
wave modes (cﬁ) directly from the STFE as a function of
time, which confirms the result from thermal-capillary-wave
theory (38) at thermal equilibrium (as # — 00) and (2) showed
that the wave modes are uncorrelated, which is used in the
derivation (39) of the fluctuation amplitude (h%).

3. Solving the linearized problem with Langevin motions
on the boundaries

The problem we are looking to solve is given by

8h3 . )/l’lg 34]’13

—_— = B24

ot 3u ox* (B24)

h3(0,1) = Ni(2),  h3(Ly, 1) = Na(2), (B25)
33h; 33h;

—(0,t) = ——(L,,t) =0, B26

7 (0.0 =22 (L) (B26)

where N (t) and N,(¢) are Langevin diffusion processes de-
scribed as

dN,

57=—k1\’1(l)+f1(1), (B27)
dN-
sd—f = —kNy(t) + fo(1). (B28)

Here & is the coefficient of friction, k is the har-
monic constant. fj(f) and f,(¢) are Gaussian noises that
satisfy  (f1(s)f1(7)) = 28kgT (s — ) and (f2(s)f2(7)) =
2&kgT 5(s — t). This problem can be further divided into two
subproblems:

h h3 3*h
KT Nl (B29a)
ot 3u oxt
h31(0,8) = Ni(#), h3i1(Ly, 1) =0,  (B29b)
33/131 83h;1
0,t) = ——(L,,t)=0, B29
G (0.0) = =3 (L) (B29¢)
and
ah h3 3%h
e PN e i (B30a)
ot 3u oxt
h32(0,8) =0,  haa(Ly, 1) = Na(2),  (B30b)
33h3 33hs»
0,1) = ——(L:,1) = 0. B30
T (0.0) = = (L) (B30c)

Since Eq. (B24) is linear it is easy to see that hs(x, ) =
h31(x,t) + hsp(x, t) is a solution. Now, A3 (x, t) can be found
with the following procedure. Let hs;(x,?) = wi(x,t)+
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v1(x,t), where wy(x,t) = Ni(¢)(1 —x/Lx)z. This choice of
wi(x, t) ensures that

wi(0,1) =Ni(t), wi(Ly,t)=0 (B31)
and
m =0. (B32)
9x3
So after substituting hs3i(x,t) = wi(x, 1)+ vi(x,¢) and

Langevin diffusion to Eq. (B24), we have

o Bwn _y (00
o or 3uho<8x4)’ (B33)
01(0,1) = vy (L, 1) = 0 (B34)
3 3
i (0 )—a—(L 1)=0 (B35)
X 2
N1(0)<1 —L—) +01(x,0) =0 (B36)

We then expand v;(x,?) and dw;(x,?)/d¢ in wave modes
@, (x) corresponding to the pinned contact line problem since
it is a Dirichlet-type boundary condition

vi(x, 1) = ano()go(x) + Y ani()gi(x),

(B37)
i= 1
—(x 1) = Bio(t)po(x) + Z But)pi(x).  (B3B)
i=1
L.\’
Gij = / @i(xX)p;(x)dx
0
L3
30°
2—L,) cot (LXA,.I/4/2)
XA?M ’
tan (x}/“LX/z) [A:/ALX tan (A}/ALA/Z)-&Q]
)»1/4 k]

= { an (2L, /2) [)L.'MILX cot (1, /2) 2]
)L]/4 s

8A”4 '/4[A'/4tan( 1/4L/) ]/4lan( ]/4L /2)]

Since the expression for "a—’:’ is known, we should be able
to calculate B;(t) explicitly. However, since ¢;(x) are not
orthogonal we can expand it only with finitely many wave
modes and calculate B;(¢) by solving the linear system of

finite unknowns. So

N
vi(x, 1) = Zau(l)%‘(x),
i1
N

ow

—(x,t) = i()pi(x).

o o) ;ﬁl ()i (x)
We then multiply both sides of Eq. (B40) with ¢;(x) and
integrate w.r.t. x from [0, L] to get

(B39)

(B40)

L, 9
| Srenewa (B41)
0
le X 2
= / —(t)< ) @i(x)dx (B42)
0 L
@ (I)ZO, fori =0
1/4
= le (t ) 41/2 tan (LX);/ ), for odd i
1/4
dN‘ (t)inm[ 24 L, A1/4 (L"); )], for even i
(B43)
N
=3 B0 / ()6 (x) dx (B44)
j:
N
=BGy, (B45)
j=0
where G is the matrix with
(B46)
fori=j=0
fori =0, jisevenor j =0, iiseven
fori = jandiis odd,
(B47)

fori = j and i is even,

A=A

e (1 f2) e /)]

, fori # j and both odd

Ai—Aj

09

Then B;(t) can be solved explicitly in the form of u;;

dN
Pr(t) = — (0. (B48)
Substituting in Eq. (B27) we have
k 1
pit) = uu[—gM (1) + §f1 (t)] (B49)

, fori = j and both even
otherwise.

(

Now substitute Eq. (B39), Eq. (B40), and Eq. (B49) into
Eq. (B33) and we get

day; k
Z( 2 i) + [—ENI o)+ éfl (t)}ul,ga,(x))
i=0

—Z hoal,a) # . (B50)
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Recalling Thus we have an expression for &3 (x, 1):
P00 = hgico), (BS1) .
dxt ) T hay(x, 1) = Y oni(t)gi(x)
we have for Ay = 0 =1
d d +vof1-2)(1-2 * ). (B58)
o - — — — —up— ).
(—“’( )+ ulo—<t))cpo(x> (B52) ‘ L, Lo L
and fori = 1.2 N With the same procedure we can solve for 3, as well:
dal, k 1 X
—hk = =N@)— =f1t i B53 — 2 _
a3y ok [E 1) = 2 A ﬂul (BS3) hyy(x,1) = ;azz(l)wl(x)+N2(t) X<Lx un(l = - ))
Denoting C = % and multiplying both side with exp(CA;t) . (B59)
we have s where fori=1,2,...,N
d k 1 ai(t) = up; exp(—CAjt)
E[CXP(C)»J)Om(t)] = uy; gNl ) — gfl (#) [ exp(CAi1), rp |
(B54) X / |:—N2(‘L') — —fz(‘[):| exp(CAr;t)dt, (B60)
and integrating both sides we have o L& §
exp(Chit o1 (t) — a1;(0) and uy; is obtained similar to Eq. (B48). And we can write out

h3(x, t) in the required form

— / t [gmm - éfl(r)} exp(ChT)dT.  (BSS)
0

N
X X X
hi(x,t) = e xX)+NHW1—— )[1— ——ujp—
Since the initial shape of the free surface is flat we know 30 1) ; ()i x) 1 )< Lx>< L, ]OLX>
1;(0) = 0. Then for i = 0 we have

X X X
a10(t) = —ugNi(2), (B56) + NZ(I)L_(L_ - bt20(1 - L_x)>’ (B61)

andfori=1,2,...,N where e;(t) = a1;(t) + oz (1),
a1;(t) = uy; exp(—CA;t) In this subsection we solved the linearized LE with
Langevin diffusion motion on the boundaries analytically and

Tk 1
X / [ENl(r) — gfl(r)] exp(Cr;t)dtr. (B57) give the details of the derivation of Eq. (36).
0
J

4. Combined fluctuation amplitude
We first show that (hyh3) = 0. From Appendix B 3 we know h3(x, t) = hsj(x, t) + h3a(x, t), so

(hahs) = (haha1) + (haoh3s). (B62)
By Eq. (35) and Eq. (B58) we have
o N [e')
(hahs) ; ;m(z)al JO)i(x)g;(x) + ;wl(r)ci(t»so,-(x)(l - Li) (1 - Li - umLix). (B63)
By Eq. (B18) and Eq. (B57) we have
(ci()ar (1)) = Duyja) A€o / / e“““f”é[k(zvl ()di(T)) — (fi(s)di(T)]dT ds, (B64)
0

where N, (s) is the position of the fluctuating contact line driven by random force f;(s) and d;(7) is random flux. By Eq. (B18)
we have

(N1 (£)ei()) = Daj/*e™ M / M (di (TN (1)) d (B65)
0

If we consider that the random force fi(s) is uncorrelated to random flux d;(t), then by Eq. (B64) we have (c;(t)a;;(t)) = 0 and
by Eq. (B65) we have (N;(t)c;(t)) = 0 and thus (hyh3;) = 0. Applying the same argument one can derive that (hyh3;) = 0, and
thus (hyh3) = 0.

Now we consider (h3) = (h3,) + 2(h31h32) + (h3,). We first show that (h31h3) = 0. If we assume that the random forces
driving the fluctuations of the contact lines are uncorrelated (f;(¢z)f>(¢)) = 0, then the positions of the contact lines are also
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uncorrelated (N, ()N, (t)) = 0. By Eq. (B58) and Eq. (B59) we have

N N
(haths) =Y Y (et (1)) (), (x) + Z aha)Nz(r»w,(x)—x(% - M20<1 z ))

i=1 j=1 i=1

N
+ ; o2 (N1 (1)) ( - %)(1 - Li - uloLix)

e G )

=0.

We then consider (h_%] ). By Eq. (B58) we can calculate

N
(1) = ZZ (o)t (1)) i (X (x) + 22 a1,<r)N1(t)>¢,(x)< Lx) (1 = Li = uloLix)

i=1 j=1 i=1

2 2
+ (N%(r))(l . Li) (1 - Lﬁ . um%) .

By Eq. (B57) we have

ul,-uljkz —A(oi+0;)t ! ! (oit+0js)
(a1i(t)ay (1)) = 2 ¢ o Ni(D)Ni ()M 779 de ds
0 JO

2 ; k t t
_< ulgl/ztlj e*A(O'rHIj)t\/\ / N] (T)f(s)eA(O'iT+J/S) dt dS>
0 JO

+<u1§:1] Aoty / / F(O)f(s)eM o™ qr ds>
0 JO

and
2uy;k ' - t
2eni (NI (1)) :<”_1eca,., / Ny (N (e dr>_< . / f(t)Nl(t)ecmdr>.
§ 0 : 0
It is well known that for the Langevin process
kgT
(N1(T)N1(s)) = BTefélrfs\

and

(F(D)f(s)) = 28kpT S(T — 5).

But we don’t know what (N;(7)f(s)) is. By the Langevin diffusion equation we know

dN k 1

T —gNl(f) + Ef(t),
SO

%[e"/f’zvl 0] = ée"/éff(r),
then

1 t
N (1) — Ny (0) = 5/ M f(r)dr.
0
If we let N1 (0) = 0, we have
t
Nl(t)—g *k/f’/ T f(r)dr.
0
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Then we have
(Ni(0)f ) = < gt / M £ (r) drf(s)> geh / HMEF () f(5)) dr
0 0
_ i UpTe M5 ifr > s
_ k/ET k/&r _ _ B 5
= 2kgTe /(; e S 8(r—s)dr = {0’ ifr <5

So with careful evaluation we come to

(n3,(x, 1)) = ZSk(x 1),

where

kBTu1,u1] exp[—C(o; + Gj)t]
Si(x, 1) = i () (x ,
1 1) X;; T PRk )<(C ,-+’§)[C(o~i+a;)]>

kBTullu]] ( exXp [_ (Cai + g)t] - eXP[—C(Ui + Gj)ﬂ)
S(x,t) = ————¢i(x)p;(x) ,
: ;,Zl ’ (Cor+ 1Co, )

— —(Co; + &
S, t)_ZZkBTuuul/ d)l(x)(ﬁ](x)( exp[—(Co; s)t])’

=1 =1 (Cai— é—ﬁ)(Coj+’g‘)

Sl 1) == ZZkBT”“”” 6105 (x >( _owl ot Uf)r]>,

(Coi — §)IC(0i + )]

lljl

. 2kBTu1,u1j . 1 —exp[—C(o; + 7)t]
Ss(x,t)—i;; ¢,(x)¢,<x)< Clor o] )

Sex, 1) = TT<1 - %)2(1 - % _ u0x>2,

1 —exp(—(Coj + £
S0nt) = — ZZ4I<BTM1,M1] ¢,(x)¢,(x)< exp (= (Co; §)I)>’

(Coi — £)(Coj + £)

4kBTM1,M1] exp[—C(o; +O'j)t]
S = i )
Q(x, 1) = +;IZI ————¢i(x)P;(x )<(C i—g)[C(Gﬁ-aj)])

Sty = —Z (1 —exp[— (Cm + ) ]>2kBTuh¢,(x)(l B %)(1 B % —uox).

. (CO‘,' + g) &

lljl

(B77)

(B78)

(B79)

(B80)

(B81)

(B82)

(B83)

(B84)

(B85)

(B86)

(B87)

k and & can be extracted from MD simulations via Eq. (B71), and we found that Co; 4+ k/& and C(o; + o) are always positive

for any i and j, so ast — 00, S; = 0, S merges with S7, S4 merges with Sg, and we have

h2 (x) Z Z kpTuyuy jk B06: () + i i 2kpTuiiuy 2hsTwitt; s o)
31 £2(Ao + Bl +opl E[A(oi+op]

i=1 j=1

kBT _ i 2 _ i _ 2 B 3kBTu1,vu1<,-k ' '
+_<1 ) <1 L Mox) ZZéZ(Aa,»—§)(A0,+§)¢'(x)¢’(x)

+ii ST RWI S TRV (N T
L oo, — DA+ ol T S A + 5 L=

(B88)

Following the same derivation one can find that (h%2 (x)) is symmetric to (h_%l (x)) around L, /2. And so with Eq. (B88) we have

calculated
(B3(0) = (B3, (0)) + (13, (x)).
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In this subsection we (1) showed that perturbation induced
by thermal noise in the bulk %, and perturbation induced
by thermal noise on the boundary &3 are uncorrelated under
the linearized construction and (2) calculated the fluctuation
amplitude (hg(x)) and the combined fluctuation amplitude
(Tha(x) + h3(x)]?), expression (41), in detail.

APPENDIX C: 3D CIRCULAR THIN FILM WITH 90°
CONTACT ANGLE

In this Appendix we lay out the technical details for 3D
circular thin film with a 90° contact angle.

1. Derivation of wave modes

We begin with the linearization of thin film equation in
three dimensions. Consider a perturbation to the free surface

h(x,t) = ho + €hy(x)T (1), (ChH
where € < 1. Apply the perturbation to 3D LE (42) and match

the leading order, and we get

dT h
o) = —50
dt 3u

where V* is the biharmonic operator. We can then separate the
variables to get
T _ vy VPVl
T 3/L h4
where the minus sign in front of A* guarantees stability, given
A being a real number. Since we have a circular thin film it is

natural to work in cylindrical coordinate, and we arrive at the
following eigenvalue problem:

V2V2hy(r, 0) = 0*hy(r, 9), (C4)

V4hy(x), (C2)

=24, (C3)

where o* = 2*(3n)/(yh3) > 0. The general solution of the
eigenvalue problem of the biharmonic operator can be ob-
tained in cylindrical coordinate as follows. For the moment let
us denote A4 as H and the eigenvalue problem can be rewritten
as

(V2= 0®) (V2 + HH(r,0) = 0. (C5)
This tells us that H = C{H; + C,H, where
V2H, + 0*H, =0 (C6)
and
V’H, — w*H, =0, (C7)

and C; C, are constants. This is easy to see: Eq. (C5) is
equivalent to

V2H(r,0) + o*H,(r,0) = 0,
V2H(r,0) — *H(r,0) = H;(r, 0) (C8)
or
V2Hy(r,0) — 0*Hy(r,0) = 0,
V2H(r,0) + o*H(r,0) = Ha(r, 6). (C9)

For sake of argument, continue with the first case (and later
it is easy to see that the two cases are equivalent)—we have

already worked out what H, is. From the equation for H we
can see that H is the solution of the homogeneous problem
plus a special solution, and it is easy to see that

1
H:HQ— Z_Q)ZHI

To solve for H; and H, we use separation of variables
H (r,0) =R(r)®,(0), Hy(r,0) = Ry(r)®,(0), and we have

(C10)

1 1
R{®, + —R|0| + SR O] + 0’R 0, =0, (C11)
r r
1 1
R)®; 4+ —R)0, + S Ry®) — 'R0, = 0. (C12)
r r
Divide by R, ®; (R,0,) we have
oy Ry R 2.2 2
_ 2 1 =n"-, Cl13
o, r R, + rRl + w°r n ( )
@// R// RI
——2 =22 42 WP =R (C14)
@2 R, R,
Since ®; and ®; must be periodic with 277, we have
©®1(0) = Ay cos(nb) + B; sin(nb), (C15)
®,(0) = A, cos(nb) + B, sin(nb), (C16)

where n is a positive integer. And for Ry, Ry, if we let p = wr
we have

/! 1 / n2
R+ =R +(1-= )R =0, (C17)
o P

/! 1 / n2
Ry+—Ry— 1+ = )R =0, (C18)
P J)

and we can immediately see that these are the Bessel function
of the first kind and the modified Bessel function of the first
kind, so

Ri(p) = C1Ju(p) + D1Y,(p), (C19)

Ry(p) = Coly(p) + D2K;i (p). (C20)

And so

H,(r,0) = [A| cos(nf) + By sin(nb)][C1J,(wr) + DY, (wr)]
+ [A; cos(nf) + B, sin(nf)]
x [Col(wr) + Do Ky (wr)]. (C21)

Since the height of the film at the origin is finite, the terms
involving Y, and K, must be zero, so the general solution is

H,(r,0) = [A cos(nf) + By sin(nd)]J,(wr)

+ [A3 cos(nf) + B, sin(nd)]11,(wr), (C22)
where n =0, 1, .. .. Here we don’t have to consider negative
n because

Jop = (=1)"J, (C23)
and
I,=1, (C24)
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Applying the 90° contact-angle boundary condition (48) we 2. Thermal-capillary-wave theory
obtain The free energy required to perturb the free surface is given
0,J.(wa) + O:I (wa) = 0, (C25) by the product of the surface tension and the surface area
created:

and applying the no-flux boundary condition (49) gives

—6,J, ®al)(wa) = 0. C26 amopra an\* 1 [(on\’?
1, (wa) + O, 1) (wa) (C206) E=y / / \/1 + <_) + _2<_> rdrd6 — wd
These two conditions tell us the dispersion relation o Jo ar re\ 96

J'(wa) =0, (C27) (C32)

. , .
and since I, is always positive,

0, =0. (C28)

and assuming small perturbations

an\>  [oh\?
For each n, the dispersion relation gives a list of suitable r2<—> + <—) <1, (C33)
frequencies {w, o: @ = 1,2, ...}, and so the wave modes are or 3¢
X! (r,0) = cos(nf)xn.q(r), (C29)  so that a Taylor expansion gives
Y2 (r,0) = sin(nb) xn.q(r), C30 2 oeal rap\? 1 [9h\?
(1203 = S0 tna (1) (0 E%Z/ f 2) +5(52) |rdrae. (34
where 2Jo Jo ar r2\ 96

Xna = Jn(@nar), n=01,.... (@30 Applying Eq. (54) and denoting

In this subsection we (1) derived the general solution to the

eigenvalue problem for 3D circular film, which will be used in Oma = Apo(t)cos(mb) + B, o sin(mb), (C35)
Eq. (D1) and (2) derived the wave modes for 3D circular film
with prescribed 90° contact angle. we find

|
© o0 00 oo 2 pa 1
E=IY YRy /0 /0 [®m,a(9)®n,ﬁ(0>x,;1,a(r>x,;,,g<r)r + @;,,,O,(e)®;.ﬁ<9>xm,a(r)xn,ﬁ(r);} drdo
a=1 p=1

m=0 n=0
00 00 a yi 00 o0 00 a 1
=yr Z Z/ AO""AO'ﬂX(/),aX(;.ardr + 7 Z Z Z/ (Am,ozAm,,B + Bm,aBm,ﬂ)(X;nan;nyﬁr + m2Xm,aXm,ﬂ ;) dr
a=1p=1"0 m=1a=1 p=1"0
0 a 02
=ym Z ZAO,aAO,ﬁ / (Vxé,ax{),,g + _XO,aXO,ﬁ>dr
a=1 =1 0 r
yr 00 00 00 a m
T 22D (Anahnp + BuaBus) f (rx,;,ax,;,ﬁ + _Xm,aXm,ﬂ>dr- (C36)
m=1a=1 f=1 0 r
We can show that (even for m = 0)
a m2 a m2
/ (rx,;w)(,;l,ﬂ + TXm,aXm,ﬂ>dV = / (T)(m,a — Xma — rax,’,;’()())(m,,gdr = Sim.abup (C37)
0 0
where
1
Sma = Ewm,aa(wm,an,i, 1 (O, @) = 20 1 (O, 0O (O, @) + O @ (O, D)) (C38)

Sm,a can be further simplified using the fact that x,, o = Ju(wmor) and the property of Bessel function J, (0) = Ju—1 —
m/pJm(p):

1 , 2
Sm,oz = Ewm,aa<wm,aa(-]m(wm,aa))2 - anl(wm,a) + wm,aaj,i(wm,aa)> . (C39)
[
The dispersion relation (53) then tells us that Considering the asymptotic expansion of the Bessel function
of the first kind, as x — o0,
[ 2 2m+ 1 ey
Sy = %(wi,aaz _ mz)-],%,(wm,aa)- (C40) Jn(x) - CcoS (x - n JT) + O(x ), (C41)
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one can easily see that since w,, o increases with m linearly,
Sm.a also increases with m linearly for large m. Follow the
same procedure as in Eq. (C37), we can also show that the
wave modes are orthogonal,

2w pa .
/ f Yo (1 0)Y) 4(r, 0)rdr dO = 8;;8,m8upC.  (C42)
0 0

for some constant C, which gives us confidence to apply an
equipartition theorem.

In this subsection we (1) calculated the extra surface en-
ergy associated with the perturbations supporting Eq. (56), (2)
showed that perturbed surface area S, ,, increases linearly with
n, which leads to the use of cutoff length scale, and (3) showed
that the wave modes T,"W are orthogonal to support Eq. (58)
and Eq. (59).

APPENDIX D: 3D CIRCULAR THIN FILM
WITH A PINNED CONTACT LINE

In this Appendix we lay out the technical details for the 3D
circular thin film with a pinned contact line.

1. Derivation of wave modes

Applying the pinned boundary condition (64) and no-flux
boundary condition (49) to the general solution (C22):

H,(r, 0) = [A; cos(n8) + By sin(n0)][C1J,,(¢r) + D1 Y, (¢r)]
+ [A; cos(nf) + B, sin(nf)][Cr1,(¢r)

+ DK, (¢1)], (D1)
we get
O1J,(Za) + Oyl (ta) =0 (D2)
and
—OJ/(¢a) + Ol (¢a) = 0. (D3)
This tells us that
O

and gives us the dispersion relation

2ndy(Ea)l(Ca) + caldy(C a1 (Ea) — Jup1 (Ea)ly(Sa)] = 0.
(D5)

For each n the dispersion relation gives a list of suitable
frequencies {¢, o = 1,2, ...}, with wave modes given by

W, (r,0) = cos(nd) o (1), (D6)
e (r, 0) = sin(nd) Y, o (). (D7)
Here
- _ Jn({n,aa) -
Vna(r) = Ju(nal) T o) @n’aa)ln(;n,ar), n=01,....
(D8)

2. Thermal-capillary-wave theory

Similar to Appendix C 2 we have

S IG]
S = vy Z ZCO,aCO,,S

a=1 p=1

a , , 02
X/o (”lﬁo,a‘po,,s + T‘ﬁo,alﬁo,ﬁ)dr

+ % Z Z Z(Cm,acmﬁ + D’"»"‘Dm'ﬂ)

m=1 a=1 =1

a , , m2
X A <7Wm,a¢m,,s + TWm,oA%n,ﬂ)drs (D9)

where C,, , and D,, , come from the notation

O.e(0) = Cyp.q cos(mb) + D,y o sin(mo). (D10)
We now show that for any m (even when m = 0)

a 2

4 I m
/ (”/fmﬁal/fm,,s + TI/fm,alﬂm,ﬁ)dr
0

“ m2 / "

= / _Ipm,at - 1//,,,,0, - ”ﬂm,a 1,[/m,ﬂdr

0 r
= Km,a&xﬁs (DIT)

where the first equality used the fact that v, (0) =
Y p(a) = 0. Recall that f,, o(r, 0) = O, (0)V,(r) is one
of the eigenfunctions that satisfies

V2V fr0a (1, 0) = @iy o fna (1, 0), (D12)

and expanding this equation in polar coordinate gives us

2 1 +2m?
" " "
I/fm,ot + ;wm,a ) wm,a
1+ 2m? m* — 4m?

+

3 l[fr/n,a + ) 1;me,oz = wfmawm,a~ (D13)
r r

With the help of Mathematica [68], using a similar procedure
as before, we found that

a m2
wjﬁa A <rw;n,a¢;n,ﬂ + Twm,awm,ﬂ>dr
2
_ 4 “(m ’ 1"
= Wy o T‘/’m,a - I»//m,o( - rl/fm,a vfm,ﬁdr
0
2
_ 4 “ m / Vi d
=W, 0 Tlﬁm,ﬂ - wm,ﬁ —TVYp 1lfm,ot r

a , , m2
:w,‘;ﬁ / (rwm,alpmﬁ + Twm,awm,,g>dr. (D14)
0
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If Wy, # @y p this implies that

a m2
/(; <”/f,/n,o,1ﬂ,/n,,g + Twm,awm,ﬂ>dr = Km,aaaﬂ’ (DIS)

where
I (W at)

In%(wm,aa)

1 2 2
I{m,(x = Ewm,aa Imfl(wm,aa)Ierl(a)m,aa)

_Jml(wm,aa)]m+l(wm,aa)>~ (Dl6)

Considering the asymptotic expansion of the Bessel function
of the first kind (C41) and the asymptotic expansion of the

modified Bessel function of the first kind, as x — o0,

1 1 —4n? >
1,(x) = exp(x) %<1 + g + 0k )), (D17)

one can easily see that for large n, K, , increases with n
linearly.

In this subsection we (1) calculated the additional surface
energy associated with the perturbations used in Eq. (71) and
(2) showed that perturbed surface area K, , increases linearly
with n, which leads to the use of cutoff length scale for wave
modes.
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