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Abstract. Thermally activated phenomena in physics and chemistry, such
as conformational changes in biomolecules, liquid film rupture, or ferromag-
netic field reversal, are often associated with exponentially long transition times
described by Arrhenius’ law. The associated subexponential prefactor, given by
the Eyring–Kramers formula, has recently been rigorously derived for systems in
detailed balance, resulting in a sharp limiting estimate for transition times and
reaction rates. Unfortunately, this formula does not trivially apply to systems
with conserved quantities, which are ubiquitous in the sciences: The associated
zeromodes lead to divergences in the prefactor. We demonstrate how a general-
ised formula can be derived, and show its applicability to a wide range of systems,
including stochastic partial differential equations from fluctuating hydrodynam-
ics, with applications in rupture of nanofilm coatings and social segregation in
socioeconomics.
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1. Introduction

Metastability is a well-known phenomenon appearing in many areas of natural sciences:
A stochastic system spends a long time near some typical configuration, but can rarely
switch (transition) to a drastically different configuration. The corresponding waiting
times are known to be exponentially large in the noise strength.

The typical picture is that of a stochastic diffusion in a potential landscape, where
local minima correspond to long-lived states. Fluctuations can then push the system
across a potential barrier into another local minimum, in which it will remain for long
times. While chemical reactions, conformational changes in biomolecules, protein fold-
ing, or magnetic field reversal in ferromagnets are well-known examples of this phe-
nomenon, similar ideas can be found in rather broad areas of science, such as in brain
activity [1], quenched disorder in semiconductors [2], tipping points in Earth’s climate [3]
including warm-water currents in the north Atlantic [4], or ecosystem collapse [5].
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Concretely, take the gradient diffusion for Xt ∈ Rn,

dXt =−∇U (Xt) dt+
√
2εdWt , (1)

where U : Rn → R is the potential, and Wt white-in-time Brownian motion. For this
system and in the limit of small noise, ε→ 0, transitions between two local minima x−
and x+ of U (x ), under some assumptions on the potential [6], must happen through
a saddle point xs, and the expected transition time τ is given by the Eyring–Kramers
formula

τ =
2π

|λ−|

√
|detHs|
detH−

e∆U/ε (2)

asymptotically sharp in the limit of vanishing ε. Here, H− =∇∇U(x−) and Hs =
∇∇U(xs) are the Hessian of the potential U at the starting fixed point x− and at
the saddle xs , respectively, and λ− is the single negative eigenvalue of Hs, correspond-
ing to the single unstable direction of the saddle point. The exponential scaling with the
energy barrier height ∆U = U(xs)−U(x−) is known as Arrhenius’ law [7], and can be
made rigorous within sample path large deviation theory as established in [8] in more
general cases than just gradient diffusions. The pre-exponential factor is also known for
almost a century [9, 10], but has only recently been proven rigorously [6, 11–14]. Within
these works, it is possible to consider the more general case of a diffusion in a potential
landscape with mobility M(x) : Rn → Rn×n, which is positive definite and symmetric,
via

dXt =−M (Xt)∇U (Xt) dt+ ε∇·M (Xt) dt+
√
2εM1/2 (Xt) dWt , (3)

where M1/2(x) : Rn → Rn×n is the unique positive definite matrix for which M1/2M
T
1/2 =

M and (∇·M)j(x) =
∑

i∂xi
Mij(x). In this case, the Eyring–Kramers formula reads [14]

τ =
2π

µ−

√
|detHs|
detH−

e∆U/ε , (4)

where µ− is the unique negative eigenvalue of the matrix M(xs)Hs.
While the generalised gradient diffusion with mobility (3) can still be interpreted as

system that minimises the potential U, just with a position dependent metric given by
the mobility, it opens up a much wider class of physical phenomena beyond the over-
damped Langevin equation (1). In particular, if further generalizing to the functional
setup and allowing generalised gradient diffusions in function spaces or spaces of prob-
ability measures, it includes hydrodynamic limits of interacting particle systems, lattice
gases, pedestrian dynamics, traffic flow, etc, all of which can be seen as (functional)
gradient flows of some entropy functional for a (generalised) Wasserstein metric [15].
For example, the large number of particles limit of many non-interacting random walkers
is given by the stochastic diffusion equation for a density ρ(x, t),

∂tρ=∆ρ+
√
2ε∇· (√ρη) ,

https://doi.org/10.1088/1742-5468/ad8075 3
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with η spatio-temporal white noise, and ε= 1/N for N random walkers. It can be
interpreted as a functional gradient flow

∂tρ=−M (ρ)
δE [ρ]

δρ
+
√
2εM1/2 (ρ)η (5)

in the entropy landscape

E [ρ] =

ˆ
ρ logρdx

and with mobility operator

M (ρ)ξ =∇· (ρ∇ξ) (6)

(and thus M1/2(ρ)ξ =∇· (√ρξ)). The main point of this paper is to generalise
the Eyring–Kramers formula (4) to generalised gradient systems (5) with conserved
quantities.

1.1. Main result

The major problem in applying the Eyring–Kramers formula (4) to generalised gradient
systems of the form (5) is that in almost all cases of physical relevance, the mobility
operator is not positive definite, but instead features zero-eigenvalues corresponding
to conserved quantities. For example the mobility in (6) has a zero eigenvalue, with
constant functions being the corresponding eigenfunctions, that is associated with con-
servation of particle number for the underlying particle diffusion equation. This situation
is generic in hydrodynamic limits, which often conserve mass, momentum, energy, etc.
Our main result is a modification to the Eyring–Kramers formula, which corrects for
the conserved quantity. For a single conserved quantity, it is given by

τ =
2π

µ−

√
|detHs|
detH−

√
m̂ ·H−1

s m̂

m̂ ·H−1
− m̂

e∆U/ε (7)

where m̂ is the vector normal to the conserved quantity submanifold, and where stable
fixed point x− and saddle point xs have to be appropriately re-interpreted. An extension
to multiple conserved quantities will also be provided in section 2.3.

We remark that while a non-invertible mobility operator leads to divergences in
the naive formula for the prefactor, a similar situation may also occur on the level of a
diffusion without mobility, where the Hessian of the potential itself might be degenerate
at the saddle point or at the fixed point, as discussed for example in [11, 16].

In the following, we will derive equation (7) via a formal asymptotic expansion. In
particular, we will compute the asymptotics of the mean first passage time in section 2
through a boundary layer analysis and Laplace asymptotics, incorporating the com-
plications of the conserved quantity. We will then demonstrate the applicability of the
formula by computing mean first passage times for a simple toy model in section 3, and
to two more realistic stochastic partial differential equations describing liquid thin film

https://doi.org/10.1088/1742-5468/ad8075 4
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rupture in section 4, and urban segregation in a socioeconomic model of social dynamics
in section 5.

2. Mean first passage time and laplace asymptotics

In this section, we will derive equation (7) via a formal asymptotic expansion. We start
with deriving a generic formula for a general stochastic differential equation and perform
its boundary layer analysis in section 2.1. In section 2.2, we then specialize to the case
of (non-degenerate) gradient flows with mobility (3) and apply Laplace asymptotics to
derive the well-known case of the literature. Lastly, in section 2.3, we apply the same
reasoning to the case at hand, namely gradient flows with degenerate mobility, where
a conserved quantity yields a mobility matrix that is no longer positive definite. This
chain of arguments yields our newly proposed formula, which we subsequently discuss
in the context of stochastic hydrodynamics in section 2.4. While the original chain of
arguments could be phrased in the more rigorous language of capacity theory as well, it
is at this functional stage that a rigorous proof is much harder to achieve, and we thus
resort to formal arguments throughout. We present our final full computational scheme
in section 2.5 that forms the basis for our examples in sections 3–5.

Consider first the general stochastic differential equation for Xt ∈ Rn,

dXt = b(Xt) dt+
√
εσ (Xt) dWt , (8)

where b : Rn → Rn is the deterministic drift, σ : Rn → Rn×n defines the noise covariance
matrix a(x) = σ(x)σT (x), and Wt is n-dimensional Brownian motion. We assume the
case where there is a stable fixed point x− ∈ Rn such that b(x−) = 0 and the eigenvalues
of ∇b(x−) all have negative real part. We are interested in the time it takes the process
to first exit the basin of attraction B of x− starting at x ∈B,

TB (x) = inf {t > 0 | Xt /∈B} .

TB(x) is a random variable, and its expectation wB(x) = ETB(x), the so-called mean
first passage time, fulfills the inhomogeneous stationary Kolmogorov equation [17]{

LwB (x) =−1 for x ∈B

wB (x) = 0 for x ∈ ∂B ,
(9)

where ∂B is the boundary of the basin of attraction of x−, for which n̂ · b(u) = 0 ∀ u ∈
∂B, with n̂ being the outwards pointing normal vector to ∂B. Here,

L= b(x) ·∇+ 1
2εa(x) :∇∇ (10)

is the generator of the SDE (8), from which we can deduce the invariant distribution
ρ∞(x) through the stationary Fokker–Planck equation

L†ρ∞ = 0,

where L† is the L2-adjoint of the generator.

https://doi.org/10.1088/1742-5468/ad8075 5
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In the case of the gradient flow (3), the invariant distribution is given as Gibbs
distribution through the potential itself,

ρ∞ (x) = Ce−U(x)/ε . (11)

Further, there is a distinguished point xs on ∂B for transitions from x− out of B, given
through the barrier height [11],

∆U = inf
u∈∂B

(U (u)−U (x−))

i.e. the smallest potential barrier encountered by continuous curves starting at x− and
leaving through ∂B. The point at which this barrier is taken, xs ∈ Rn, is assumed to
be a saddle point with a single unstable direction, i.e. ∇U(xs) = 0 and M(xs)∇∇U(xs)
having exactly one negative eigenvalue µ−, and n − 1 positive eigenvalues. In general
there might be multiple saddles, all of which are dominated by xs, which is therefore
called the relevant saddle. In the following, we write Ms =M(xs).

From large deviation theory [8] it is then known that

wb (x−)≍ eε
−1(U(xs)−U(x−)) , (12)

which determines the exponential part of the mean first passage time, recovering
Arrhenius’ law [7]. The purpose of the Eyring–Kramers law, and the goal of this paper,
is to go beyond this mere exponential scaling law, and get sharp asymptotics of the
prefactor omitted in (12).

2.1. Asymptotic expansion and boundary layer analysis

In order to get access to the prefactor, and loosely following [17], we assume wB(x)≍
eK/ε as estimated by large deviation theory (12) and work with

τ (x) = e−K/εwB (x) ,

which fulfills, via (9), the Kolmogorov equation{
Lτ (x) =−e−K/ε for x ∈B

τ (x) = 0 for x ∈ ∂B ,

so that for ε→ 0 the right hand side vanishes and the Kolmogorov equation becomes
homogeneous. Since the diffusive term in the generator is O(ε) as well, we can assume
that within B the variable τ(x) is merely advected and thus constant, τ(x) = C0, to
leading order in ε. We need to consider only the behavior in a small O(

√
ε) boundary

layer near ∂B.
For a point x near the boundary ∂B, we choose coordinates

x= u−
√
εηn̂ ,

for η > 0 and u ∈ ∂B, compare figure 1. In this boundary layer, to leading order, we
therefore have

https://doi.org/10.1088/1742-5468/ad8075 6
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Figure 1. Schematic depiction of the boundary layer along ∂B: In an O(
√
ε) vicin-

ity, a point x ∈B is expanded along normal direction n̂ from boundary point
u ∈ ∂B, with local coordinate η > 0.

L ≈ (b(x) · n̂) 1√
ε
∂η + n̂ · a(x) n̂︸ ︷︷ ︸

α(u)

∂2
η .

Since x is O(
√
ε)-close to u ∈ ∂B, we can expand

b(x) · n̂= b(u) · n̂︸ ︷︷ ︸
=0

+n̂ ·∇b(u)(x−u)+O
(
|x−u|2

)
,

and introduce the additional quantity β(u) through

n̂ ·∇b(u)(x−u) =−
√
εη n̂ ·∇b(u) n̂︸ ︷︷ ︸

β(u)

.

We will later see that β(u) at the saddle u= xs is related to the unstable eigenvalue
µ−. Now, all terms are O(ε0) and we arrive at

0 = Lτ (η) = ηβ (u)∂ητ (η)+α(u)∂2
ητ (η) , (13)

with α,β being the leading-order contributions of the normal terms of a and b, respect-
ively. Equation (13) is solved by

τ (η) = C1 (u)

ˆ η

0

e−
β(u)
2α(u)

η2 dη .

Since we know the limit τ(η)
η≫1−−→ C0, we must have the matching condition

C1 (u) = C0

√
2β (u)

πα(u)
,

https://doi.org/10.1088/1742-5468/ad8075 7
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from which we can obtain C 0. The connection between the bulk and the boundary can
be exploited when integrating Lτ(x) =−e−K/ε against the invariant density ρ∞(x), and
integrating by parts,

−e−K/ε

ˆ
B

ρ∞ (x) dx=

ˆ
B

ρ∞ (x)Lτ (x) dx

=

ˆ
B

(
L†ρ∞

)︸ ︷︷ ︸
=0

τ (x) dx+

ˆ
∂B

ρ∞ (n̂ · b(u)) τ (u)︸︷︷︸
τ=0on∂B

+ε(ρ∞n̂ · a(u)∇τ (u)

− τ (u)︸︷︷︸
τ=0on∂B

n̂ · a(u)∇ρ∞

 du

=−
√
ε

ˆ
∂B

ρ∞ (u)α(u)∂ητ du

=−
√

2ε

π
C0

ˆ
∂B

ρ∞ (u)
√

α(u)β (u)du

so that

C0 = e−K/ε

√
π

2ε

´
B ρ∞ (x) dx´

∂B ρ∞ (u)
√
α(u)β (u)du

.

We conclude that in the interior,

wB (x−) =

√
π

2ε

´
B ρ∞ (x) dx´

∂B ρ∞ (u)
√
α(u)β (u)du

. (14)

2.2. Laplace asymptotics

Note that so far we have not made use of the fact that our system is a gradient flow
with non-degenerate mobility (3), and that result (14) is asymptotically correct for ε≪ 1
for arbitrary systems. We can now make use of our explicit knowledge of the invariant
measure (11) to apply Laplace asymptotics to the volume and boundary integrals in (14).
Concretely, that means that in the numerator, we can approximate

ˆ
B

ρ∞ (x) dx≈ (2πε)n/2√
detH−

e−U(x−)/ε ,

since x− is the minimum of U within B, while in the denominator

ˆ
∂B

ρ∞ (u)
√
α(u)β (u)du≈ (2πε)(n−1)/2√

|detHs|

√
α(s)β (s)

(
n̂ ·H−1

s n̂
)−1/2

e−U(xs)/ε ,

https://doi.org/10.1088/1742-5468/ad8075 8
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where the (n̂ ·H−1
s n̂)-term comes from the fact that we integrate the Gaussian integral

only over the tangent space to the separatrix at the saddle, Txs∂B, as derived in the
appendix in lemma 4. In total, this yields

wB (x−) = π

√
n̂ ·H−1

s n̂

α(xs)β (xs)

√
|detHs|
detH−

e∆U/ε,

where we recall that α(xs) = n̂ ·Msn̂ and β(xs) = n̂ ·MsHsn̂, and where the O(ε)-part
of the drift term b(x) =−M(x)∇U(x)+ ε∇·M(x) is subdominant and thus dropped.
Here we write M(xs) =Ms, ∇∇U(x−) =H− and ∇∇U(xs) =Hs.

Using lemmas 2 and 3 of the appendix, we recognise that α(xs) and β(xs) are
connected to µ− via

β (xs) =
α(xs)

n̂ ·H−1
s n̂

= µ− ,

where µ− is the unique negative eigenvalue of MsHs. We arrive at the final result

wB (x−) =
π

µ−

√
|detHs|
detH−

e∆U/ε .

This demonstrates the capacity theory result from the literature [13] for the case of
gradient flows with position-dependent mobility.

2.3. Conserved quantities of the mobility matrix

We now consider the case where the system has a conserved quantity, understood in
the sense that the mobility matrix M(x) : Rn → Rn×n is no longer positive definite,
but positive semi-definite. In other words, for each x ∈ Rn, there exists a number of
zero eigenvalues of M (x ), and M (x ) is no longer full rank. As a consequence, since
the mobility acts in front of both the deterministic drift and the stochastic noise, the
degrees of freedom associated with the zero eigenvalues are never changed, and remain
a constant of integration. The concrete value of the conserved quantity and their nature
depends on both the mobility matrix and the initial condition of the system.

For simplicity, we consider a single conserved quantity, so that M (x ) has a
unique zero eigenvalue for all x ∈ Rn with normalised eigenvector m̂(x), while all
its other eigenvalues are strictly positive. The process (3) then remains constrained
to an (n− 1)-dimensional sub-manifold S ⊂ Rn, with normal vector field m̂(x), since
neither the gradient drift nor the stochastic force can ever have a contribution in the
direction of m̂.

This situation is depicted in figure 2. Note that, while the original fixed points
(both stable, y±, and saddle ys) of the system still exist, they do not lie within S.
Instead, the effective stable points x+ and x− that should be considered for the Laplace
asymptotics are no longer (local) minima of the potential U (x ), but instead are only

https://doi.org/10.1088/1742-5468/ad8075 9
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Figure 2. Conserved quantities of the stochastic process: If M (x ) has a zero eigen-
value with eigenvector m̂, then the gradient diffusion (3) will remain constrained
to a submanifold S ∈ Rn (dotted line) with normal vector m̂. Instead of the actual
fixpoints {y−,ys,y+}, the relevant points are now the corresponding fixed points
{x−,xs,x+} of the dynamics constrained to the submanifold S.

local minima of the potential constrained to the submanifold S, so that ∇U(x−) ∥ m̂
instead of ∇U(x−) = 0. The same is true for the effective saddle point xs, which is

no longer a proper saddle of U (x ). Therefore, the new basin of attraction, B̃, is now a

subset of S instead of all of Rn, as is its boundary, ∂B̃. As before, we write Ms :=M(xs),
Hs =∇∇U(xs) and H− =∇∇U(x−).

In fact, all arguments made in sections 2.1 and 2.2 go through with the minor
modification of operating in the (n− 1)-dimensional tangent spaces Tx−S and TxsS
around the stable point and the saddle instead of all of Rn. This is possible in particular
because at the saddle point xs, the space of conserved quantities TxsS cannot be parallel
to the separatrix ∂B, or in other words n̂(xs) ∦ m̂(xs) (where we recall thatMsm̂(xs) = 0
and HsMsn̂(xs) = µ+). In fact, as shown in lemma 6, n̂ and m̂ are perpendicular in
the H−1

s inner product, which simplifies the integration. Following similar arguments
in section 2.1 one can derived the mean first passage time with a conserved quantity
to be

wB (x−) =

√
π

2ε

´
B̃ ρ∞ (x) dx´

∂B̃ ρ∞ (u)
√
α(u)β (u)du

. (15)

The volume and boundary integrals in (15) can be evaluated using the invariant meas-
ure (11) and the Laplace approximation as in section 2.2. Note that additional correcting
factors need to be introduced when we apply the Laplace method and integrate over
B̃ ⊂ S and ∂B̃, as shown by lemmas 4 and 5 in the appendix. In particular, we get

ˆ
B̃

ρ∞ (x)dx=

ˆ
B̃

e−U(x)/εdx
ε→0
= e−U(x−)/ε

ˆ
Tx− B̃

e−
1
2x·H−xdx

=

√
(2πε)n−1

detH−

∣∣m̂ ·H−1
− m̂

∣∣−1/2
e−U(x−)/ε
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at the stable fixed point, and
ˆ
∂B̃

√
α(u)β (u)ρ∞ (u) du=

ˆ
∂B̃

√
α(u)β (u)e−U(u)/εdu

ε→0
=
√

α(xs)β (xs)e
−U(xs)/ε

ˆ
Txs∂B̃

e−
1
2u·Hsudu

=

√
(2πε)n−2

detH−

√
α(xs)β (xs)

|m̂ ·H−1
s m̂|1/2 |n̂ ·H−1

s n̂|1/2
e−U(xs)/ε

at the saddle point. Recall α(xs) = n̂ ·Msn̂, β(xs) = n̂ ·MsHsn̂, and using lemmas 2
and 3 of the appendix, we arrive at our final result

τ =
2π

µ−

√
|detHs|
detH−

√
m̂ ·H−1

s m̂

m̂ ·H−1
− m̂

e∆U/ε, (16)

where we additionally used the fact that the expected time of transitions τ is twice the
expected time to exit, wB(x−).

Remark 1. If we define as A
∣∣
V
the restriction of an operator A : Rn → Rn to a subspace

V ⊂ Rn, i.e. A
∣∣
V
: V → Rn, then equation (16) can be equivalently written via determ-

inants of the Hessians restricted to the tangent spaces of the conserved manifold at the
two relevant points,

τ =
2π

µ−

√√√√√
∣∣∣det(Hs

∣∣
TxsS

)∣∣∣
det
(
H−
∣∣
Tx−S

) e∆U/ε . (17)

While notationally more pleasing, this formulation is less readily implementable numer-
ically, as it necessitates finding a basis for the tangent spaces and expressing the Hessians
in this basis, while equation (16) simply corrects for the single conserved quantity under
knowledge of the vector m̂.

Remark 2. Via a repeated application of our arguments (see lemma 7), one can gen-
eralize equation (16) to multiple conserved quantities by choosing an appropriate basis
for the space of conserved quantities. Concretely, for vectors {m̂1, . . . ,m̂k} normal to the
conserved manifold S, under the assumption that mi are orthogonal in the H−1 inner
product, we obtain

τ =
2π

µ−

√
|detHs|
detH−

√
m̂1 ·H−1

s m̂1

m̂1 ·H−1
− m̂1

· · ·

√
m̂k ·H−1

s m̂k

m̂k ·H−1
− m̂k

e∆U/ε .

The variant via restricted Hessians, equation (17), remains unchanged in this case.

Remark 3. Of course it might be simpler, in particular in finite dimensional systems, to
consider instead of the original stochastic evolution equation a reduced equation that
eliminates variables to enforce the conservation constraint explicitly. For example, for a
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chemical reaction transforming molecule A into B and back, but with the total number
A+B conserved, one could instead consider stochastic dynamics in the difference A−B.
While sometimes this approach is practical, and it must lead to identical results, it often
produces complicated equations, in particular in the functional setting.

2.4. Functional gradient flows and stochastic hydrodynamics

While the above discussion and derivation focuses on gradient flows in Rn, following the
work in [15], it has been realised that a vast array of systems that originate from mac-
roscopic limits of microscopic interacting particle systems can similarly be interpreted
as gradient flows, on the space of probability measures, and as generalised Wasserstein-
gradient flows of an entropy functional. The easiest example is the many-particle limit
of non-interacting Brownian walkers, in the large particle limit, N →∞, but inter-
actions with external forces, surrounding fluids, or inter-particle interactions can be
incorporated as well. For finite but large number of particles, N ≫ 1, one expects fluc-
tuations of the order 1/

√
N and arrives at a stochastic evolution equation in the form

of a stochastic partial differential equation (SPDE), generally summarised under the
notion of fluctuating hydrodynamics [18–20]. If the underlying microscopic model is in
detailed balance, so is the resulting stochastic hydrodynamics equation. For the example
of N = 1/ε non-interacting random walkers,

dXi (t) =
√
2DdWi (t) ,

the limiting SPDE for the density ρ(x, t) of walkers is formally given by

∂tρ(x, t) =D∆ρ(x, t)+
√
2Dε∂x

(√
ρ(x, t)η (x, t)

)
,

which is a functional gradient flow

∂tρ=−M (ρ)
δE [ρ]

δρ
+
√
2εM1/2 (ρ)η ,

with

E [ρ] =

ˆ
ρ logρdx , and M (ρ)ξ =D∇· (ρ∇ξ) .

The above limiting equation is formal, and there is considerable effort involved in mak-
ing this intuition rigorous, in particular for nonlinear equations and in higher dimen-
sions. The precise mathematical interpretation of the resulting SPDEs is subject to
active research [21, 22]. This includes, but is not limited to, the interpretation of the
O(ε)-divergence term in (3), which for many nonlinear equations diverges and requires
renormalization. For the purposes of this paper, we retreat to the notion that ultimately,
every numerical computation relies on discretization and hence an ‘UV’ cutoff that reg-
ularises any divergences. In systems of physical meaning, such a cut-off can be naturally
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justified as length scale where the continuum limit breaks down, such as the size of a
molecule for a fluid. In this sense, any spatially continuous SPDE is to be interpreted as
a notational shorthand for a discrete system with an appropriate physical cut-off length
scale.

2.5. Full computational scheme

Given the above derivation, we now have a complete recipe for computing mean first
passage times for metastable stochastic hydrodynamics. Concretely, in order to estimate
the mean first passage time out of a locally stable configuration, we apply the following
steps:

(i) Compute the saddle point (for example via edge tracking or gentlest ascent dynam-
ics (GAD) [23]) constrained to the submanifold restriction, respecting the conserved
quantities.

(ii) Compute the Hessian around the effective saddle and stable fixed point by discret-
izing the continuous operator via some spatial discretization scheme.

(iii) Compute the spectrum of this Hessian, and correct for its action in conserved
normal direction (the subspace perpendicular to mass conservation).

The result will be a quantitative estimate for the mean first passage time for the
small noise limit. Notably, there is no fitting parameter or additional assumption. The
computation has to be done only once, and can then be used for any noise strength ε
(but of course will be more accurate for smaller ε).

In the following section, we will demonstrate the applicability of this scheme to a
number of examples, starting with a two-dimensional and easy to visualise toy example
in section 3, and then two stochastic partial differential equations motivated from inter-
acting particle systems and stochastic hydrodynamics: the rupture time for liquid thin
films in section 4, and the a socio-economic model of urban separation in section 5.

3. Two-dimensional gradient flow

As a simple and easy to visualise example, we first consider a double-well for (x,y) ∈ R2

given by

U (x,y) = 1
4

(
1−x2

)2
+ 1

2y
2
(
x2+ 1

4

)
. (18)

While this potential has two minima, at (−1,0) and (1, 0), and a saddle at (0, 0), we
want to modify the gradient flow with the mobility matrix

M (x,y) = 1
2

(
1+x2

)
p̂p̂T ,
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Figure 3. Left: Doublewell (18) with conserved quantity. While the full double-well,
with minima y± and saddle ys, adheres to the original Eyring–Kramers formula (4),
the actual system (19) has a conserved quantity, restricting it to the dashed sub-
space. Not only does this result in different minima x± and saddle xs of the restricted
system, but the ratio of Hessians in the Eyring–Kramers formula becomes incorrect,
as it considers curvatures into suppressed directions. Right: Time to leave the basin
of attraction of x− as a function of the noise amplitude ε. Dots show the result of
1000 numerical simulations of (19) each, compared to the original Eyring–Kramers
formula (2) (light blue dashed), the formula (4) taking into account the mobility
matrix (dark blue dashed), and finally our formula (16) further taking into account
the conserved quantities (red solid). Clearly, both corrections are needed to explain
the observed times.

for a normalised vector p̂ ∈ R2. Since M (x ) has a zero eigenvalue with corresponding
eigenvector m̂= (p̂)⊥, the gradient flow

d(Xt,Yt) =−M (Xt,Yt)∇U (Xt,Yt) dt+ ε∇·M (Xt,Yt)+
√
2εM1/2 (Xt,Yt) (dWx,dWy)

(19)

will always remain confined to the subspace

S =
{
(x,y) ∈ R2| (x y) · m̂= k

}
.

In other words, the quantity k = (x y) · m̂ is a conserved quantity of equation (19),
similar to how mass is conserved in fluctuating hydrodynamic equations. Its value
throughout remains that of the initial conditions of (19). This situation is depicted
in figure 3(left).

For a numerical experiment to demonstrate the correctness of our formula, we con-
cretely pick p= (1, 14) and p̂= p/|p|, and initialise with the conserved quantity set to

k = 1
8 . With these values, we can numerically measure the mean time it takes to exit

the basin of attraction of the left well, and compare the results to our formula in
section 2. The equation (19) is solved using a fourth order Runge–Kutta method [24]
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with timestep dt= 5 · 10−3. Figure 3(right) shows the results of the Monte-Carlo exper-
iment, simulating N =1000 samples for each value of ε and averaging the observed
time to exit the basin of attraction of the left well. This is compared against the ori-
ginal Eyring–Kramers formula (2) considering only the properties of the Hessian (light
blue dashed), the generalised Eyring–Kramers formula including the correction from
the mobility operator, equation (4) (dark blue dashed), and lastly our final result (16)
which further considers the correction of the restriction to the conserved subspace. As
can be seen, the change of eigenvalue from λ− to µ−, as well as the conserved quantity

correcting factor
√
(m̂ ·H−1

s m̂)/(m̂ ·H−1
− m̂), both lead to a correcting factor of roughly

2, and both corrections are needed in order to explain the observed result. We stress
that in order to obtain the fully corrected Eyring–Kramers law (16), a single computa-
tion needs to be done for a prediction for all ε, and without any fitting parameter. The
small noise limit, ε≪ 1, appears to work reasonably well already for values ε < 1

4 .

4. Stochastic hydrodynamics and thin film rupture

The stability of nanoscale thin liquid films on solid substrates plays a key role in many
applications including coating [25], nanofluidic transistors [26] and nanomanufactur-
ing [27]. It has been observed both experimentally [28–30] and numerically with molecu-
lar dynamics simulations [31–33] that initially flat films would rupture spontaneously,
as shown in figure 4(left). The classical explanation for the rupture is due to the com-
petition between the disjoining pressure (otherwise known as the van der Waals forces)
and the surface tension, and a linear stability analysis [34] further reveals a critical
wavelength above which the wave modes are linearly unstable, eventually leading to
rupture. However, subsequent observations [30] have revealed a larger set of regimes,
one of which was hypothesised to stem from thermally activated rupture in the linearly
stable regime.

Nanoscale films are difficult to observe experimentally and often molecular dynamics
is utilised to explore their stability. However, MD can be computationally expensive,
and thus there has been a drive towards developing macroscopic models to model this
system. It has been observed [35, 36] that the evolution of the thin film follows a
stochastic hydrodynamic limit, namely the stochastic thin film equation (STF) which,
in the two-dimensional case, after non-dimensionalisation [33] reads

∂th(x, t) = ∂x

[
c(h)∂x

(
−∂2

xh+
4π2

3h3

)
+
√
2εc(h)η

]
. (20)

Here, h(x, t) is the height of the thin film, c(h) = h3 is the mobility associated with a
no-slip solid, ε is the noise amplitude and η is a Gaussian white noise uncorrelated in
both time and space, i.e. ⟨η(x, t)η(x ′, t ′)⟩= δ(x−x ′)δ(t− t ′) where ⟨ ⟩ is the ensemble
average and δ(x) is the Dirac delta functional. The STF is assumed to be periodic on
x ∈ [0,1] and the non-dimensionalisation is chosen so that the linear stability depends
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Figure 4. Left: Snapshots from molecular dynamics simulation of a thin liquid
film on a solid substrate. The blue particles indicate liquid and vapor. The sil-
ver particles indicate solid. The black lines show the position of the liquid–vapor
interface, i.e. the film height. While the film is initially flat, is eventually ruptures
by thermal fluctuations. Right: Average waiting time for rupture of thin film is
plotted as a function of the inverse strength of the fluctuations. As ε decreases, the
observed average rupture time collapse onto the Eyring–Kramers prediction with
our expression for the prefactor (16).

solely on the average film height h0 =
´ 1
0 h(x, t)dx= const: for h0 > 1 the film is linearly

stable and small perturbations without thermal fluctuations would decrease exponen-
tially with time. For simplicity we use a constant mobility c(h) = h3

0. The STF can also
be interpreted as a functional gradient flow

∂th(x, t) =−M (h)
δE

δh
+
√
2εM1/2 (h)η ,

for an energy functional

E [h] =

ˆ 1

0

(
1

2
(∂xh)

2− 2π2

3h2

)
dx , (21)

with mobility operator (acting on a test-function ξ(x))

M (h)ξ =−∂x
(
h3
0∂xξ

)
,

and

M1/2 (h)ξ =
√
h3
0∂xξ .

The thermally activated rupture of the liquid nanofilm can then be interpreted as a
diffusive exit of the SPDE (20) from the basin of attraction of the spatially constant
solution

h(x, t) = h0 > 1.
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Additionally, the system obeys mass conservation, and as such constant functions are
a zeromode of the mobility operator. Therefore, in order to compute the expected time
to rupture, our full formalism (16) is necessary. Specifically, the computation consists
of the following steps: (1) we compute the saddle point of the energy functional (21) via
GAD, (2) we compute the second variation of the energy functional, acting on a test
function ξ(x) at an arbitrary point h*, given by (see appendix B)

δ2E [h(x)]

δh(x)2

∣∣∣
h=h*

ξ (x) =− 4π2

h* (x)4
ξ (x)− ∂2

xξ (x) ,

and compute numerically the spectrum of this operator at the fixed point, h* = h0,
and at the saddle, h* = hs(x). The ratio of these Hessians, evaluated according to
equation (2), yields the light blue dashed line in figure 4. (3) Since the mobility operator
is not the identity, there is a correcting factor including µ−, which we obtain numerically
by computing the unique negative eigenvalue of the operator

M (hs (x))
δ2E [h]

δh2

∣∣∣
h=hs

ξ = h3
0∂

2
x

[(
4π2

hs (x)
4 + ∂2

x

)
ξ

]
,

which yields instead the dark blue dashed line in figure 4. Lastly, we need to compute the
action of the Hessian in direction of the vector normal to the conserved submanifold,
which in this case is just the constant function 1(x)≡ 1. The inverse of the Hessian
operator is evaluated numerically, and the result is the red solid line in figure 4, which
agrees very well with the waiting time to rupture obtained via many stochastic Monte-
Carlo experiments that integrate the STF equation (20) until a rupture is observed
(black dots). The exponential time differencing method [37] is used for the Monte-Carlo
experiments with timestep dt= 1.566 · 10−7, and the details of implementation can be
found in [33]. Here we choose the average film height to be h0 = 1.01, the STF is solved
on a domain with 128 uniformly distributed grid points, and the rupture times are
averaged over 100 events. Note that in [33], additional molecular dynamics simulations
demonstrated agreement of expected rupture times with equation (16).

To further characterise the rupture process, we investigate how the energy (21)
changes with time near rupture. We perform 200 independent simulations and record
the film profiles for 5 · 105 timesteps before the rupture time tr. The energy is then
calculated with the averaged profile to filter out the effect of thermal fluctuations, as
shown in figure 5. The light blue lines and the black dashed line in the inset show
the averaged profiles at different times and the analytical saddle shape calculated from
GAD, respectively. It is shown that the energy increase as the averaged profile deviates
from its flat steady state, until the averaged profile reaches the saddle shape hs and drops
dramatically. The analytical energy barrier is recovered from the simulations, and the
analytical saddle shape agrees well with the averaged profile with maximum energy.
These findings indicate that our saddle shape calculation is correct and the transition
(or rupture) indeed goes through the saddle.
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Figure 5. Change of energy near rupture time. Noise amplitude is choosen to be
ε=0.0005. The dark blue line is the energy of the averaged profile, the light red line
is the energy of the flat profile and the light green line is the energy of the saddle
shape calculated analytically via GAD. The energy is translated by the energy of
the flat profile and normalised by noise amplitude ε. The inset shows the averaged
profile at different times with light blue lines and the analytical saddle shape with
black dashed lines.

5. Social dynamics and urban segregation

Fluctuating hydrodynamics SPDEs are not only encountered in continuum limits of
actual fluid models, but are regularly derived whenever there is a large number of
interacting agents, such as interacting active particles [38], in traffic flow [39], pedestrian
dynamics [40, 41] and socioeconomic interactions [42]. In each case, the particles are
replaced by agents capable of acting according to some simple ruleset. In socioeconomic
models, a generic assumption is that the agents try to individualistically improve their
own outcome or utility. In this context, the number of possible equilibrium states of
the overall model, as well as their relative likelihood, becomes extremely important, as
it describes directly the most likely emergent state that the system will spontaneously
converge to. Consequently, the convergence to the ultimate stable state can be seen as
the manifestation of the ‘invisible hand’ crystallizing the collective societal state out of
the individual agents’ behavior.

A well-known example is the phenomenon of urban segregation, described by the
Schelling or Sakoda–Schelling models [43, 44]. In these, a large number of agents is
prescribed, each belonging to one of multiple distinct sub-populations, for example rep-
resenting social or ethnic background, which are free to relocate depending on their
preferences. In the original model, the presence of only a slight preference of agents
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to surround themselves with neighbors of their own sub-population led to completely
segregated geographical regions in the long-time limit. Following ideas introduced in [42,
45, 46], these models can be simplified to consist only of a single population, with spa-
tial exclusion and density dependent diffusivity, leading to a fluctuating hydrodynamic
equation of

∂tρ=∇· ((1− ρ)∇(D (ρ)ρ)+ ρD (ρ)∇ρ)+∇·
(√

ρ(1− ρ)η (x, t)
)
, (22)

where η is spatio-temporally white noise and the diffusivity of agents is given by

D (ρ) =D0e
−CK⋆ρ . (23)

This diffusivity exhibits a spatial convolution ‘⋆’ with a kernel K, representing non-local
sensing of their neighborhood by each of the agents. In essence, equation (22) describes
the (nonlinear) diffusion of agents under spatial exclusion, such that the density remains
between 0 and 1, representing complete absence of agents to full occupation. The density
dependent diffusivity (23) represents the tendency of agents to relocate towards a higher
density of peers in the vicinity, up to some maximum range given by a spatial cutoff
of the (symmetric) kernel K(x,y) =K(x− y). This corresponds to energy and mobility
given by 

E [ρ] =
´ (

ρ logρ+(1− ρ) log(1− ρ)− 1
2CρK ⋆ρ

)
dx

M (ρ)ξ =−∇ · (ρ(1− ρ)D (ρ)∇ξ) ,

M1/2 (ρ)ξ =∇·
(√

ρ(1− ρ)D (ρ)ξ
)
,

(24)

where the mobility again conserves total mass, and we are in the framework where our
results apply.

For simplicity, we assume the population density ρ is periodic on domain x ∈ [0,1].
We also assume a Gaussian kernel K(z) = 1√

2πκ
exp(−1

2z
2/κ2) with sensing length scale

κ> 0, corresponding to K̂(k) = exp(−k2κ2/2) in Fourier space. Expanding the convo-
lution for κ≪ 1 yields (see appendix C)

(K ⋆ρ)(x) = ρ(x)+
κ2

2
∂2
xρ(x)+O

(
κ4
)
.

The Hessian operating on a periodic test function ξ(x) can then be expressed by
(see appendix B)

δ2E [ρ(x)]

δρ(x)2
ξ (x) =

(
1

ρ(x)
+

1

1− ρ(x)
−C

)
ξ (x)− κ2

2
C∂2

xξ (x) .

For simplicity, we further assume that the population density is constant in the mobility

operator, ρ(x) = ρ̄, where ρ̄=
´ 1
0 ρdx is the mass that is conserved. We can then calculate

µ− by numerically computing the unique negative eigenvalue of the operator

M (ρ̄)
δ2E [ρ]

δρ2
ξ =−ρ̄(1− ρ̄)D (ρ̄)∂2

x

[(
1

ρ
+

1

1− ρ
−C − κ2

2
C∂2

x

)
ξ

]
.
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Figure 6. Left: average waiting time for the spontaneous segregation of the social
dynamics model as a function of the inverse strength of fluctuations. After a
transient for large noise, waiting times are exponentially distributed. The correct
exponential distribution is correctly predicted, including its prefactor, by our for-
mula (16), while naive application of the Eyring–Kramers formula leads to mis-
predictions of a factor 5. Right: evolution (time-space) of the density of agents
near an observed segregation event. The originally homogeneous and fluctuating
distribution of agents spontaneously segregates into a dense and a diluted region.

For the parameter C = 6,κ= 8 · 10−3, D0=1 and mass ρ̄=
´
ρdx= 0.7908, this sys-

tem exhibits multiple stable fixed points: A spatially homogeneous solution ρ(x) = ρ̄, as
well as a localised (‘cluster’ or ‘aggregated’) state with minimum ρmin = 0.1747, which
observes an aggregation of the agents in part of the domain, leaving behind a depleted
region where the concentration of agents is low. Both of these states are locally stable
and hence long lived for small enough fluctuations. Fluctuations are understood to be
spontaneous local movements of agents, preserving their total number, but rearranging
them locally in space, with probabilities based both on the local densities (through the
exclusion terms proportional to ρ(1− ρ), which prevents movement out of empty or
into fully occupied regions), as well as their perceived relative attractiveness encoded
in the energy functional. As a result, an initially homogeneous population will even-
tually spontaneously segregate due to fluctuations. Population density ρ is discretised
with 64 uniformly distributed grid points. Equation (22) is solved numerically using
the same exponential time difference scheme as in the previous section with timestep
dt= 7.832 · 10−5. The population density is segregated when its minimum has reached
ρmin, and we record the waiting times averaged over 100 realisations for different noise
amplitude ε. These waiting times have an exponential distribution, correctly predicted
by our formula (16), as shown in figure 6(left, red line), while using the original Eyring–
Kramers formula, or the mobility correction only leads to mispredictions by a factor
approximately 5.

Figure 6(right) shows a single segregation event, in which an initially homogeneous
population of agents is driven to segregation by fluctuations that locally deplete the
population strong enough for a gap to form, transitioning into the segregated state
with a dilute region and an aggregate.
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6. Conclusion

We show how recent breakthroughs in the derivation of mean first passage times to
leave the basin of attraction of metastable states can be generalised to compute expected
waiting times for wide classes of (generalised) gradient flows in the presence of conserved
quantities. These generalizations are particularly important when applied to fluctuating
hydrodynamics equations, which are limiting equations of interacting particle systems
in the limit of many particles.

Such equations are ubiquitous in nature, whenever a large number of interacting
agents leads to complex emergent behavior: Apart from molecular dynamics and its
applications in chemistry and material design, systems such as traffic flows, pedes-
trian dynamics, or socioeconomics must follow similar large-scale limits. All these sys-
tems usually possess conserved quantities, such as mass or number-of-agents, energy, or
momentum, which lead to divergences in the naive application of the limiting equations
for mean first passage times due to zero-eigenvectors in the corresponding mobility
operator.

Here, we show how we can generalise existing results to incorporate (1) position
dependent mobility, (2) degenerate mobility operators including zero-modes, (3) form-
ally the functional setting, where we are applying our results successfully to gradient
flows in function spaces. The result is a closed formula for the expected passage times
for leaving a locally stable basin of attraction of the stochastic dynamics in the low-noise
limit. We demonstrate our results to be applicable in a broad class of settings, includ-
ing liquid nanofilm rupture times as well as social dynamics with urban segregation.
The results are very generally applicable to other systems of the same class, including
shallow water flows, Elo dynamics, or traffic flows.
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Appendix A.

Lemma 1. Let s be the relevant saddle, and µ− the unique unstable eigenvector of MsHs,
and n̂ the normal vector to ∂B at the saddle. Then

HsMsn̂= µ−n̂ , (A.1)
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i.e. n̂ is an eigenvector of HsMs with eigenvalue µ−.

Proof. Let V + = Txs∂B be the tangent space to the separatrix at the saddle, which is
spanned by the n − 1 eigenvectors {v+i }i∈{1,...,n−1} that correspond to positive eigenvalues
µ+
i of MsHs. All these stable eigenvectors are parallel to the separatrix, implying v+i ·

n̂= 0 for all i. Further, denote by v− the unique unstable eigenvector of MsHs with
eigenvalue µ−. Together, the v+i and v− span all of Rn and we can write every vector
v ∈ Rn as

v = c−v−+
∑
i

c+i v
+
i with c−,c+1 , . . . ,c

+
n−1 ∈ R . (A.2)

Then

n̂ ·MsHsv = c−n̂ ·MsHsv
−+

∑
i

c+i n̂ ·MsHsv
+
i

= µ−c
−n̂ · v−+

∑
i

c+i µ
+
i n̂ · v+i︸ ︷︷ ︸

=0

= µ−

c−v− · n̂+
∑
i

c+i v
+
i · n̂︸ ︷︷ ︸
=0

 = µ−v · n̂ .

We conclude

v ·HsMsn̂= µ−v · n̂ . (A.3)

Since (A.3) holds for arbitrary v, we obtain the statement (A.1).

Lemma 2. At the saddle, x= xs,

β (xs) = n̂ ·MsHsn̂= µ− . (A.4)

Proof. Follows immediately from lemma 1.

Lemma 3. At the saddle, x= xs,

µ− =
α(s)

n̂ ·H−1
s n̂

. (A.5)

Proof. For α(s) = n̂ ·Msn̂, we have

Msn̂= µ−H
−1
s n̂ (A.6)

from lemma 1. Solving for µ− yields

µ− =
n̂ ·Msn̂

n̂ ·H−1
s n̂

=
α(s)

n̂ ·H−1
s n̂

, (A.7)

which is the desired result.
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Lemma 4. Let N be a co-dimension 1 hyperplane in Rn with normal vector n̂, and
H ∈ Rn×n positive definite. Then, the Gaussian integral, restricted to the hyperplane N,
is given by

ˆ
N

e−
1
2y·Hy dσ (y) = (2π)(n−1)/2 |n̂ ·H−1n̂|−1/2|detH|−1/2 . (A.8)

Proof. We haveˆ
Rn

e−
1
2 z·Hz dz = (2π)n/2 |detH|−1/2 . (A.9)

In order to obtain a formula for the restricted Gaussian integral, consider the coordinate
change

z = y+ sH−1n̂ with y ∈N , s ∈ R . (A.10)

Since we can write H−1n̂= (n̂ ·H−1n̂)n̂+ v, where v ∈N , we know that the change of
variables yields

dz = d
(
H−1n̂

)
∧dy = |n̂ ·H−1n̂|dσ (y) ds . (A.11)

Here, dσ(z) is the differential element in the hyperplane N. Thus,

ˆ
Rn

e−
1
2 z·Hz dz = |n̂ ·H−1n̂|

ˆ
R

ˆ
N

e−
1
2(y+sH−1n̂)·H(y+sH−1n̂) dσ (y) ds

= |n̂ ·H−1n̂|
(ˆ

N

e−
1
2y·Hy dσ (y)

)(ˆ
R
e−

1
2 s

2(n̂·H−1n̂) ds

)
= (2π)1/2 |n̂ ·H−1n̂|1/2

ˆ
N

e−
1
2y·Hy dσ (y) ,

and via equation (A.9) we arrive at the desired result.

Lemma 5. Let N and M be two co-dimension 1 hyperplanes in Rn with normal vectors
n̂ and m̂, respectively, and H ∈ Rn×n positive definite. Then, the Gaussian integral,
restricted to the intersection of the two hyperplanes N ∩M , is given by

ˆ
N∩M

e−
1
2y·Hy dy = (2π)(n−2)/2 |n̂ ·H−1n̂|1/2|m̂ ·H−1m̂|1/2 (detH)1/2 (A.12)

if n̂ and m̂ are orthogonal in the H−1 inner product,

n̂ ·H−1m̂= 0. (A.13)

Proof. With a similar argument as before, consider the coordinate change

z = y+ sH−1n̂+ tH−1m̂ with y ∈N ∩M , s, t ∈ R (A.14)
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Then, the volume element yields

dz = dy ∧d
(
H−1n̂

)
∧d
(
H−1m̂

)
= |
(
n̂ ·H−1n̂

)(
m̂ ·H−1m̂

)
−
(
n̂ ·H−1m̂

)(
m̂ ·H−1n̂

)
|dσ (y) dsdt . (A.15)

Since by assumption n̂ ·H−1m̂= m̂ ·H−1n̂= 0, we arrive at the desired result with the
same in lemma 4.

Lemma 6. Let m̂ be the zero eigenvector of the mobility matrix M(xs) at the saddle xs,
and n̂ the normal vector to the separatrix ∂B at the saddle xs. Then

n̂ ·H−1
s m̂= m̂ ·H−1

s n̂= 0. (A.16)

Proof. From lemma 1 we know

Msn̂= µ−H
−1
s n̂ , (A.17)

and thus

m̂ ·H−1
s n̂=

1

µ−
m̂ ·Mn̂=

1

µ−
n̂ ·Mm̂= 0. (A.18)

Lemma 7. Let N and Mi be co-dimension 1 hyperplanes in Rn with normal vectors n̂
and m̂i, i = 1, . . . ,k, respectively, and H ∈ Rn×n positive definite. Then, the Gaussian
integral, restricted to the intersection of the hyperplanes N ∩M1 . . .∩Mk, is given by

ˆ
N∩M1...∩Mk

e−
1
2
x·Hxdx= (2π)(n−k)/2 |n̂ ·H−1n̂|1/2 (A.19)

× |m̂1 ·H−1m̂1|1/2 . . . |m̂k ·H−1m̂k|1/2 (detH)1/2 , (A.20)

if n̂ and m̂i are orthogonal in the H−1 inner product.

Proof. With a similar argument as before in lemma 5, consider the coordinate change

z = y+ sH−1n̂+
k∑

i=1

tiH
−1m̂i with y ∈N ∩M1 . . .∩Mk, s, ti ∈ R.

Then, by the assumption that n̂ and m̂i are orthogonal in the H−1 inner product, we
have the volumen element

dz = dy ∧d
(
H−1n̂

)
∧d
(
H−1m̂1

)
. . .∧d

(
H−1m̂k

)
= |
(
n̂ ·H−1n̂

)(
m̂1 ·H−1m̂1

)
. . .
(
m̂k ·H−1m̂k

)
|dσ (y) dsdt1 . . .dtk,

and we arrive at the desired result with the same in lemma 5.
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Appendix B. Hessian as second variation

In this section we sketch a formal derivation of Hessian of a given energy functional.
We first show the derivation of the Hessian of the energy functional of the STF. The
functional derivative of the energy functional of STF (21) is given by [47] (here we omit
in our notation the t-dependence of h)

δE [h(x)]

δh(x)
=

4π2

3h(x)3
− ∂2h(x)

∂x2
. (B.1)

The Hessian we are looking for is formally the functional derivative of the functional
derivative. If we rewrite equation (B.1) as an integral,

δE [h(x)]

δh(x)
= F [h(x)] =

ˆ 1

0

(
4π2

3h(x ′)3
− ∂2h(x ′)

∂x ′2

)
δ (x ′−x)dx ′ (B.2)

=

ˆ 1

0

f

(
x ′,h(x ′) ,

∂2h(x ′)

∂x ′2

)
dx ′ , (B.3)

we can again use the definition of functional derivative [47] to get

ˆ 1

0

δF [h(x)]

δh(x)
ξ (x)dx=

{
d

dϵ
(F [h(x)+ ϵξ (x)])

}
ϵ=0

(B.4)

=

ˆ 1

0

∂f

∂h
ξ (x ′)+

∂2f

∂ (∂2
x′h(x ′))

2

∂2ξ (x ′)

∂x ′2 dx ′ (B.5)

=

ˆ 1

0

ξ (x ′)

(
∂f

∂h
+

∂2

∂x ′2
∂2f

∂ (∂2
x′h(x ′))

2

)
dx ′ (B.6)

=

ˆ 1

0

ξ (x ′)

(
− 4π2

h(x ′)4
δ (x ′−x)− ∂2

∂x ′2 δ (x
′−x)

)
dx ′ (B.7)

=− 4π2

h(x)4
ξ (x)− ∂2ξ (x)

∂x2
(B.8)

=

ˆ 1

0

δ2E [h(x)]

δh(x)2
ξ (x)dx . (B.9)

Here ξ(x) is a periodic test function, the third line used integration by parts, and the
fourth line used the properties of Dirac delta functional and its derivatives. The Hessian,
δ2E[h(x)]/δh(x)2, can be interpreted as an operator on ξ(x), and thus can be discretised
and calculated numerically.

Similarly, we can calculate the gradient and the Hessian of the energy functional
of the urban segregation model. Equations (24) and (5) give us the following energy
functional

E [ρ] =

ˆ 1

0

(
ρ logρ+(1− ρ) log(1− ρ)− 1

2Cρ2− κ2

4
Cρ

∂2ρ

∂x2

)
dx . (B.10)
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The functional derivative of E[ρ] is

δE [ρ]

δρ
= log(ρ)− log(1− ρ)−Cρ− κ2

2
C
∂2ρ

∂x2
, (B.11)

or in its integral form

δE [ρ]

δρ
= F [ρ] =

ˆ 1

0

f

(
x ′,ρ(x ′) ,

∂2ρ(x ′)

∂x ′2

)
(B.12)

=

ˆ 1

0

(
log

(
ρ(x ′)

1− ρ(x ′)

)
−Cρ(x ′)− κ2

2
C
∂2ρ(x ′)

∂x ′2

)
δ (x ′−x)dx ′ . (B.13)

And the Hessian of E[ρ] is given by
ˆ 1

0

δF [ρ(x)]

δρ(x)
ξ (x)dx

=

ˆ 1

0

∂f

∂ρ
ξ (x ′)+

∂2f

∂ (∂2
x′ρ(x ′))

2

∂2ξ (x ′)

∂x ′2 dx ′ (B.14)

=

ˆ 1

0

ξ (x ′)

((
1

ρ(x ′)
+

1

1− ρ(x ′)
−C

)
δ (x ′−x)− κ2

2
C

∂2

∂x ′2 δ (x
′−x)

)
dx ′ (B.15)

=

(
1

ρ(x)
+

1

1− ρ(x)
−C

)
ξ (x)− κ2

2
C
∂2ξ (x)

∂x2
(B.16)

=

ˆ 1

0

δ2E [ρ(x)]

δρ(x)2
ξ (x)dx. (B.17)

Appendix C. Local approximation of convolution

In this section we show the local approximation of convolution with a Gaussian kernel.
Given a Gaussian kernel with variance κ2,

K (x) =
1√
2πκ

exp

(
− x2

2κ2

)
, (C.1)

we first show that its Fourier transform is also a Gaussian, that is

K̂ (k) =

ˆ ∞

−∞
exp(−ikx)K (x)dx= exp

(
−κ2k2

2

)
. (C.2)

Differentiate the Gaussian kernel gives

dK

dx
=− x

κ2
K (x) . (C.3)

Fourier transform on both side gives

ikK̂ (k) =
1

iκ2

dK̂

dk
, (C.4)
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and so

1

K̂

dK̂

dk
=−kκ2. (C.5)

Integrating both side from 0 to k gives

ln
(
K̂ (k)

)
− ln

(
K̂ (0)

)
=−k2κ2

2
. (C.6)

Since the Gaussian kernel is normalised, we know that

K̂ (0) =

ˆ ∞

−∞
K (x)exp(0)dx= 1, (C.7)

and so we have the desired result. Assuming κ2 ≪ 1, we can then Taylor expand K̂ =
1−κ2k2/2+O(κ4), and so

K (x) =
1

2π

ˆ ∞

−∞
K̂ (k)exp(ikx)dk =

1

2π

ˆ ∞

−∞

(
1− κ2

2
k2+O

(
κ4
))

exp(ikx)dk. (C.8)

Since the Gaussian kernel is symmetric, the convolution is given by

K ⋆ρ=

ˆ ∞

−∞
ρ(y)K (x− y)dy (C.9)

=

ˆ ∞

−∞
ρ(y)

1

2π

ˆ ∞

−∞

(
1− κ2

2
k2+O

(
κ4
))

exp(ik (x− y))dkdy (C.10)

=

ˆ ∞

−∞

1

2π
ρ̂(k)exp(ikx)dk− 1

2π

ˆ ∞

−∞

κ2

2
k2ρ̂(k)exp(ikx)dk+O

(
κ4
)

(C.11)

= ρ(x)+
κ2

2
∂2
xρ(x)+O

(
κ4
)
. (C.12)
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