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The Supplemental Material contains: (SM1) a detailed description of the molecular simulations,
(SM2) the methods used to solve the stochastic thin film equation and (SM3) a description of the
attached videos.

I. SM1 - MOLECULAR DYNAMICS

Liquid atoms with atomic mass 6.63 x 10726 kg and solid atoms with atomic mass 3.24 x 10~2° kg are used with
the standard Lennard-Jones potential
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applied to model their interactions. Here 77; is the distance between atom ¢ and atom j, AB denotes atom types (ff
for fluid-fluid, sf for fluid-solid, ss for solid-solid), a5 is the energy parameter representing the depth of potential
wells and (5 is the length parameter denoting the effective atomic diameter. For fluid-fluid interaction, the value
of the Lennard-Jones parameters are chosen to be aj; = 1.67 x 1072 J, (}; = 0.34 nm. For solid-fluid interaction,
a:f = 0.7a}f and C:f = 0.8§;§f. The cutoff for the Lennard-Jones potential is chosen to be 7.5@}}. The solid particles
are frozen in the simulations to lower computational cost. The timestep is set to 0.0085 ps and the temperature is
set to 85 K. At this temperature, the number density of liquid and vapour are measured in a two phase system to be
n; =21.117 nm ™2 and n}, = 5.279x 1072 nm 3. The pressure of the vapour is measured to be 1.43 x 1072 £0.5x 1073
ST

To prepare the initial condition, a slab of liquid is first created with number density n; in a periodic box with
dimension (L*, Ly, h§) and equilibrated for 107 timesteps with a canonical ensemble such that the temperature is kept
constant. It is then placed onto a fcc solid plate of number density n = 66.203 nm 2 with dimension (L*, Ly, 2.55nm).
A gap of 0.17 nm is reserved between the liquid and solid, to account for the repulsive force in the Lennard-Jones
potential, and its thickness is measured in MD simulation in advance. A block of vapour equilibrated for 107 timesteps
is then placed on top of the liquid, so that the height of the simulation box is 16.5 nm. The average pressure of the
equilibrated vapour is measured 1.48 x 10_3a;‘c f / ¢ f3. The simulation is then run in the canonical ensemble, with the
positions of liquid particles recorded every 500 timesteps. The time-averaged pressure of the vapour remains almost
unchanged at 1.41 x 10*3@}“c 7 / Gt f3 during the simulation. The simulation is performed using open source software
LAMMPS [1].

The position of the liquid-vapour interface is determined via the number density and binning method [2]. The
number density of each liquid atom is calculated using a sphere of radius 0.51 nm. Note, for atoms close to the solid
surface, special care is given in the calculation of number density so that the volume does not include the solid and
the gap between solid and liquid. If the number density is higher than 0.5n* it is categorized as liquid, otherwise it
is categorized as vapour. The simulation domain is then discretized into vertical bins, i.e. a N, x N, grid, and the
free surface position in each bin is given by the maximum vertical position of all the liquid atoms inside that bin.
For L* = 19.6 nm we set N, = 50 and for L* = 80 nm we set N, = 200. N, is always set to be 1, as the model is
quasi-2D. While this method is accurate away from rupture events, when rupture is approached the film becomes just
a layer or two thick this method fails and identifies these film atoms as vapour.

For an accurate measurement of rupture time we consider both the interface position and the solid number density
— number density calculated ‘looking up’ from the solid plate. Given a point on the solid plate, instead of a sphere,
we use a wedge-shaped volume, and instead of locating the centre of the volume at the point, we locate a vertex of
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FIG. SM1: Snapshot of MD simulation near film rupture, showing the wedge-shaped volume and grid points used to calculate
the solid number density. The hydrodynamic boundary is also highlighted.

the wedge at the point, as shown in Fig. @l The angle and the height of the wedge are set to be 7/4 and 1.36
nm, respectively. If there is one layer of liquid atoms near the solid plate and two vapour atoms in the wedge, the
theoretical number density can be calculated to give 2.411 nm™2. The solid plate is uniformly discretized into N,
grid points and solid number density are calculated for these points. We determine that the film has ruptured when,
at a point, both interface position reaches 0 and the solid number density is below 2.411 nm 3.

Figurealso shows that film heights are measured from a ‘hydrodynamic boundary’, as discussed, e.g., in [3], 4],
which was defined to be 0.21 nm above the highest layer of solid atoms. In its simplest form, this accounts for the
fact that the liquid isn’t in direct contact with the solid atoms, but is located at some height above. Of course, such
effects diminish as the film heights increase.

Transport properties of liquid are also measured in MD simulations using standard methods. The shear vis-
cosity p* = 3.1 x 107* kg/(ms) is calculated via the Green-Kubo method [5]. The surface tension v* = 0.016
N/m is calculated from the difference between the normal and tangential components of pressure tensor in a sim-
ple vapor-liquid-vapor system [6]. The Hamaker constant can be calculated from MD parameters via formula
A = A%l 5(Cip)®niny [1. So the Hamaker constants for liquid-liquid surface interaction and liquid-solid
surface interaction are A}, = 4.5 x 1072° J and A}, = 2.61 x 10729 J.

The contact angle is measured in MD with a cylindrical droplet setup [§]. A block of pre-equilibrated liquid with
2046 particles is placed onto the solid substrate and the simulation then run under a canonical ensemble at 85 K
for 120000 timesteps until a single droplet is stabilised. The positions of liquid particles are then recorded and the
position of the liquid-vapour interface is calculated every 4000 timesteps using the method previously discussed. A
circle is then fitted to the mean interface position using the Coope method [9], and the contact angle is measured to
be 93°. The slip length is measured to be 0.46 £ 0.02 nm, with method described in [10], which is small compared to
H* so that no-slip is a reasonable assumption.

Tests were also conducted with a mobile solid, in which the wall atoms were constrained with a harmonic spring
and a microcanonical ensemble was used after equilibration. Importantly, using this approach, results for the waiting
times were found to be graphically indistinguishable from those obtained with frozen wall atoms.

II. SM2 - COMPUTATIONAL SOLUTIONS TO THE STOCHASTIC THIN FILM EQUATION

Here, we describe the computational approaches used to solve (i) the STF with constant mobility m(h) = h3 + ¢h2,
which, notably, remains a nonlinear problem, and (ii) the full STF. In both cases, the problem is solved in Fourier
space using a pseudo-spectral method which is advantageous due to (i) its accuracy, (ii) its ability to incorporate the
periodicity of the domain and (iii) the unambiguous way in which the white noise is cut-off, by projecting it onto the
Fourier basis which naturally contains a maximum wavenumber.

STF with constant mobility — The advantage of the constant mobility m(h) — mg = h3 + ¢h3 is that the highest



derivatives in the problem become linear and the noise becomes additive, as opposed to multiplicative, so that:
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In Fourier space (k,t) this becomes
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where h = fol he=*%dx, ay(k) = M, as(k) = iky/Zemg, G = a1 h=3 and H = ay. As the highest derivative is

linear, an integrating factor can be used, so that considering a time step from t, to t,+1 = t, + At gives the exact
expression
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where ¢ = —mgk®. The simplest treatment of the first term in the integrand follows directly from [I1] (termed scheme
ETD1) with G(k,t, + 7) = G(k,t,) = G, in the integral as constant, we arrive at
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For the second term, we note that 7 represents white noise in time, so that the stochastic integral
et fOAt e~ °TH (k) dW, fulfils, via Ito-isometry
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and we see that
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with no approximation. Clearly, once discretized in wavenumber space, k will be a vector and therefore so will c.
Then, defining M, = e®®t, My = (et — 1)/c and M3 = /(e2¢At — 1) /2¢ we arrive at our explicit scheme:
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where h,, = h(t,). After discretization in wavenumber, discrete Fourier transforms are performed with the Fast Fourier
Transform algorithm, which we denote FFT. Then, the noise at every time step is given by 7, = FFT[N(0,1)]//Ax
where N is a vector of Gaussian random variables with zero mean and unit variance, and Ax is the grid size.

The scheme is implemented into Matlab. Numerical experiments have shown that rupture shapes and times are
relatively independent (i.e. indistinguishable graphically, on our plots) if we take 128 grid points and a time step
of At = 1077, Such a small step is required to capture the relaxation of sufficiently many wavemodes, with ¢ oc k*
creating rapid relaxation of moderate to large wavenumbers.

Full STF — When considering the full form of the mobility, the highest derivatives are nonlinear (h3ﬁ) and

4
the method presented above fails. The stiffness of the equation makes the time-step constraint on explicitagchemes
extreme, so we follow the method proposed in [I2] by implicitly integrating the deterministic part of the equations,
which are still solved in Fourier space using the pseudo-spectral method, using Matlab’s built-in ODE15s solver and
then adding the noise explicitly using a standard Euler-Maruyama step. Often, the noise is assumed correlated over
some length scale and expanded in an orthonormal basis [12] [I3]; however, here we choose a simpler method and (i)
expand the noise in the Fourier basis and (ii) use the method proposed in [14] to correlate the noise linearly across

time steps.



This scheme is considerably more computationally burdensome due to the implicit integration required in between
each addition of noise. To lower the burden, we end up ensemble-averaging over less realisations (typically 10, rather
than 100 for the scheme above). Also, because m — 0 as h — 0 means the scheme is ill-posed at h = 0, we consider
breakup to occur once h = 0.05 — results are relatively insensitive to this choice, as disjoining pressure is so strong
that breakup is almost guaranteed to follow once at h = 0.05.

Validation — Relatively simple tests for both schemes were performed to confirm that in thermal equilibrium the
wave perturbations have the correct standard deviation o = 1/€/12 and that with m = mg the same results were
obtained for ensemble-averaged quantities. A more robust test is to consider the development of the nanowaves from
a flat interface, where we can compare to analytic results for the power spectrum S(k,t). Specifically, starting from
a flat film, the dimensionless version of the results from [7, [I5], for a film with h = hg + dh(x,t), is

§% = (|Bh]*) = ek hjw ™ (! — 1) 3)
where w = 47?).

In Fig. m we can see that both schemes reproduce the analytic result well. Naturally, as the analytic result is
from a linear theory, the STF with constant mobility works best, and more realisations (100) were also possible with
this method. However, the full STF model also gives reassuring results, especially for only 10 realisations, following
relatively accurately the trends of the analytic result.
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FIG. SM2: Development of the spectrum of thermal waves, starting from a flat interface h = ho = 2 at t = 0 with € = 1.
Ensemble-averaged computational results from the STF with linearized mobility (left, 100 realisations) and full STF (right, 10
realisations) are compared to the analytic solution .

Comparison — Results for the breakup time (7) from the different methods are shown in Fig. where one can
see similar values and trends predicted. Notably, the mobility for the nonlinear system decreases near the breakup
point, as m — for h — 0, so this phase of the breakup is expected to be slower than the model in which m = my
is constant — slightly large (7) are indeed seen in Fig. for the full mobility case. Future analyses could look to
improve, and speed-up, the fully nonlinear scheme in order to recover more of the thermal regime, but the indications
here are that the method with constant mobility works remarkably well.

IIT. SM3 - DESCRIPTION OF THE VIDEOS

The videos show single realisations from the cases shown in Fig. 2 of the Letter, showing rupture in the spinodal
and thermal regimes, respectively. The former (hg = 0.5) is for an initial thickness h§ = 1.18 nm and film length
L* = 80 nm and shows rupture in spinodal regime with multiple rupture points. The latter (hg = 1.14) is for an initial
thickness h§ = 2.69 nm with film length L* = 80 nm and shows a rupture typical of that seen within the thermal
regime.

Both videos are generated using the open-source package Ovito [16].
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FIG. SM3: Comparison of predicted ensemble-averaged rupture times as computed with the constant mobility m(h) = h3 4 ¢h3
(100 realisations) against the full one m(h) = h® + £h? (10 realisations).
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