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Contact between fluctuating, fluid-lubricated soft surfaces is prevalent in engineering
and biological systems, a process starting with adhesive contact, which can give rise to
complex coarsening dynamics. One representation of such a system, which is relevant
to biological membrane adhesion, is a fluctuating elastic interface covered by adhesive
molecules that bind and unbind to a solid substrate across a narrow gap filled with
a viscous fluid. This flow is described by the stochastic elastohydrodynamic thin
film equation, which incorporates thermal fluctuations into the description of viscous
nanometric thin-film flow coupled to elastic membrane deformation. The average time
it takes the fluctuating elastic membrane to adhere is predicted by the rare event theory,
increasing exponentially with the square of the initial gap height. When the forces
arising from spring-like adhesive molecules are included in the simulations, thermal
fluctuations initiate phase separation of domains of bound and unbound molecules.
The coarsening process of these unbound pockets displays close similarities to classical
Ostwald ripening; however, the inclusion of hydrodynamics affects power-law growth. In
particular, we identify a new bending-dominated coarsening regime, which is slower than
the well-known tension-dominated case.

Key words: thin films, membranes

1. Introduction
Adhesion between soft fluctuating surfaces is found in a range of engineering applications
and in biological systems. Complex lifeforms rely on cells adhering to each other,
facilitated by the binding of membrane-anchored adhesive molecules across the gap
between the membranes of the cells. The dynamics of adhesion involves a rich interplay
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of membrane deformation, chemical kinetics of the aforementioned molecular binding,
as well as fluid flow in the narrow space between the membranes, which can give
rise to intricate dynamical processes such as the coarsening of adhesion patches.
A number of essential physiological processes depend on adhesion dynamics, such as
cadherin-mediated adhesion (van Roy & Berx 2008), lumen formation between cells in
a growing embryo (Dumortier et al. 2019) and the immune synapse which facilitates
an immunological response (Grakoui et al. 1999; Dustin & Cooper 2000). Experiments
and numerical results have shown that the features of these phenomena can be passive
processes only relying on the physical forces involved (Qi, Groves & Chakraborty 2001;
Dustin 2010; Le Verge-Serandour & Turlier 2021).

One way to describe the adhesion of membranes is to adopt the Helfrich model with
an adhesion potential (Seifert & Lipowsky 1990; Smith et al. 2003, 2008; Agrawal 2011;
Hill & Al-Amodi 2024). This approach successfully predicts the equilibrium shape of the
membrane, but neglects the motion of the extracellular fluid in the cleft between the two
membranes. In such nanometrically thin but micrometrically wide channels, however, the
forces required to squeeze the viscous extracellular fluid are not negligible, motivating
a viscous thin film description of the flow (Leong & Chiam 2010). The lubrication
theory allows for a relatively simple inclusion of forces due to membrane deformation,
molecule/protein binding, as well as thermal fluctuations (Carlson & Mahadevan
2015a,b). Membranes resist lateral deformation due to membrane tension γ (Evans,
Waugh & Melnik 1976), as it increases their free energy in a manner analogous to
interfacial surface tension, whose influence on the dynamics of thin liquid films has been
studied extensively (Oron, Davis & Bankoff 1997; Craster & Matar 2009), particularly in
the case of the dewetting of nanoscale thin liquid films (Zhang & Lister 1999; Mecke &
Rauscher 2005; Grün et al. 2006; Nguyen et al. 2014; Zhang, Sprittles & Lockerby 2019;
Zhao et al. 2022). In addition, membranes of finite width d resist bending (Evans 1974), as
one side is compressed and the other side is stretched, which is characterised by a bending
modulus B = Ed3/12(1 − ν2), where E is the Young’s modulus and ν is the Poisson
ratio. Both tension and bending resist the deformation of a flat membrane, but there are
subtle differences in how they act. A bendocapillary length lBC = √

B/γ can be obtained
by balancing the forces from tension and bending, which is approximately 100 nm for the
properties of most cell membranes, and bending dominates for length scales smaller than
the critical length scale (Roman & Bico 2010; Deserno 2015).

For adhesion to occur, the membranes must first come close enough to each other to
allow the adhesive molecules to start to form bonds. In the absence of directed motion
due to active cytoskeletal forces or protein–membrane interactions (Liese & Carlson 2021;
Yuan et al. 2021), the forces required to push out the extracellular fluid in the channel
can be attributed to thermal fluctuations (Aarts 2004; Delgado-Buscalioni, Chacon &
Tarazona 2008) as well as the other fluctuations inherent to living matter (Guo et al.
2014; Gupta & Guo 2017). The fluctuations in the width of the channel, although small
in amplitude and random in direction, can still bring membranes close enough to initiate
adhesive molecule/protein binding if given sufficient time. This process is similar to the
spontaneous thermal dewetting of a linearly stable thin viscous film coated on a solid
substrate, where thermal fluctuations are needed to bring the liquid free surface close
enough to the solid substrate for the disjoining pressure to rupture the film, for which
the average waiting time for rupture can be predicted by rare-event theory (Sprittles et al.
2023; Liu, Sprittles & Grafke 2024).

After the initial binding of adhesive molecules, the adhesion patches grow in size. If
more than one type of adhesive molecule is involved, the adhesion patches can separate
into distinct regions (phases) where one specific type of molecule is bound, as is seen in
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the immune synapse, receptor tyrosine kinases (Janes, Nievergall & Lackmann 2012; Case,
Ditlev & Rosen 2019) and simulation of membrane adhered to heterogenous substrate
(Shelby et al. 2023). Excess fluid from the adhesion patches is squeezed into the regions
where molecules are unbound, which further increases the distance between membranes,
creating pockets of fluids known as lumens, which can be observed in mammalian embryo
development (Dumortier et al. 2019). These lumens can also be reproduced in reconstituted
systems by applying an osmotic shock to a giant unilamellar vesicle (GUV) that is adhered
to a supported lipid bilayer (Dinet et al. 2023). In these systems, the separated phases often
undergo a passive, physically driven coarsening process where small patches diminish,
while larger patches grow. These dynamics are reminiscent of other phase separation
processes occurring in the cooling of metal alloys (Allen & Cahn 1979; Komura et al.
1985; Bray 1994; Livet et al. 2001), liquid–liquid phase separation in biological systems
(Su et al. 2024), as well as in droplet aggregation when a thin liquid or polymer film is
adhered to a solid substrate by an attractive potential due to intermolecular forces (Derrida,
Godrèche & Yekutieli 1991; Otto, Rump & Slepcev 2006; Gratton & Witelski 2008;
Lal et al. 2020). In those systems, an effective interfacial tension drives the coarsening
process, providing a well-established t1/3 power law (Bray 1994) for the growth the
characteristic length scale Lc. For the coarsening observed in biological membranes, while
membrane tension could give rise to the same 1/3 power law, the effect of membrane
bending has not been studied and will potentially introduce different dynamics.

In this article, numerical simulations of lubrication flow including thermal fluctuations
are used to study membrane adhesion, with particular emphasis on the effects of membrane
bending as opposed to analogous systems involving interfacial tension. The average
waiting time for adhesion to occur due to fluctuations is predicted using rare-event theory.
We then show that membrane bending gives rise to power-law coarsening behaviour that is
slower than for tension-driven coarsening. We also demonstrate that the strength of thermal
fluctuations does not significantly alter the coarsening rate, but that the initial height of the
membranes does so in the hydrodynamic regime.

2. Mathematical model and numerical methods
To simultaneously study the fluid flow, elastic membrane bending, protein-like binding
and stochastic fluctuations during membrane adhesion, we turn to the elastohydrodynamic
thin film (Williams & Davis 1982; Carlson & Mahadevan 2016), describing the physical
scenario of figure 1(a), i.e. a thin layer of viscous liquid confined by an elastic membrane.
For simplicity as well as reflecting in vitro experimental conditions in which a GUV
interacts with a supported lipid bilayer (Fenz et al. 2017; Dinet et al. 2023), the substrate is
static while the upper membrane ‘rests’ on the viscous fluid film at height ĥ(x̂, ŷ, t̂) (where
the hats indicate dimensional variables) and can move vertically. As in the biological and
synthetic systems described previously (Dumortier et al. 2019; Dinet et al. 2023), the film
height ĥ (which is typically in the range of tens of nanometres) is much smaller than the
length of the domain in the lateral directions, L (typically several microns). Across the
gap, membrane-bound proteins may bind or unbind to the solid surface.

2.1. Stochastic thin film equation

By assuming a small aspect ratio of the viscous channel, ĥ/L � 1, one can apply the
lubrication approximation to describe the flow of a Newtonian fluid with viscosity μ in the
channel, leading to a parabolic velocity profile (Batchelor 2000). A random stress tensor
is introduced in the momentum equations to account for the thermal fluctuations in the
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Figure 1. (a) A sketch of an elastic membrane with thickness d in close proximity to a rigid wall separated
by a thin layer of viscous fluid of height ĥ(x̂, ŷ, t̂). Membrane molecules may bind across the channel
only if their distance is below a critical value h∗. (b) Left: a contour map of the non-dimensional height
profile h(x, y, t) at the time t∗, which is the onset of adhesion between the membrane and solid surface.
Data are shown for a membrane with non-dimensional initial height h0 = 1.6 and fluctuation intensity
Q B = (1/ l)

√
2kB T /B1/2(κc0)3/2 = 0.01, with l the equilibrium length of the adhesive molecules, kB T the

thermal energy, B the bending stiffness, c0 the equilibrium concentration and κ the molecule spring stiffness
coefficient. Right: a cross-section of the profile along the red line in the contour map; the film height at the point
of contact drops to a non-dimensional value of h = ĥ/ l ≈ 1, matching the equilibrium length of the adhesive
molecules. (c) Left: a contour map at a later time when most of the membrane is bound, but liquid is collected
in unbound patches. Right: a cross-section of the profile along the red line in the contour map, illustrating
the formation of blisters (regions where the adhesive molecules are unbound and h = ĥ/ l � 1) during the
coarsening process.

fluid, which are significant on the relevant nanometric scale (Landau & Lifshitz 1987). By
imposing no-slip and kinematic boundary conditions at the membrane, one arrives at the
following stochastic thin film (Davidovitch, Moro & Stone 2005; Mecke & Rauscher 2005;
Grün et al. 2006; Durán-Olivencia et al. 2019) that can be used to describe ĥ(x̂, ŷ, t̂):

∂ ĥ(x̂, ŷ, t̂)

∂ t̂
= ∇̂ ·

(
ĥ3(x̂, ŷ, t̂)

12μ
∇̂ p̂(x̂, ŷ, t̂)

)
+
√

kB T

6μ
∇̂ ·

(
ĥ3/2(x̂, ŷ, t̂)η̂(x̂, ŷ, t̂)

)
(2.1)

where ∇̂ represents the two-dimensional (2-D) gradient operator (∂/∂ x̂, ∂/∂ ŷ) and the
dependent variable ĥ represents height in the third spatial direction.

The first term on the right-hand side of (2.1) represents the change in film height due to
a lateral flux driven by the horizontal pressure gradient ∇̂ p̂. The second term on the right-
hand side incorporates the effect of thermal fluctuations at temperature T , by introducing
a random flux in accordance with the fluctuation–dissipation theorem and averaged across
the channel (Davidovitch et al. 2005; Mecke & Rauscher 2005; Grün et al. 2006). Here,
η̂(x̂, ŷ, t̂), is a random vector with Gaussian white noise uncorrelated in both time and
space, i.e. 〈η̂i (x̂, ŷ, t̂)〉 = 0 and 〈η̂i (x̂, ŷ, t̂)η̂ j (x̂ ′, ŷ′, t̂ ′)〉 = δi jδ(x̂ − x̂ ′)δ(ŷ − ŷ′)δ(t̂ − t̂ ′),
where 〈 〉 is the ensemble average, δi j is the Kronecker symbol, δ is the Dirac distribution
and kB is the Boltzmann constant.

Here, we note that the nonlinear prefactor ĥ3/(12μ) arises from viscous resistance to
the flow, describing the mobility of the fluid. In fact, (2.1) can be re-written as a gradient
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flow (Durán-Olivencia et al. 2019; Cates 2022; Sprittles et al. 2023) of the form

∂ ĥ(x̂, ŷ, t̂)

∂ t̂
= ∇̂ ·

(
M(ĥ)∇̂ δ F̂

δĥ
+
√

2kB T M(ĥ)η̂

)
, (2.2)

where M(ĥ) is the mobility and F̂[ĥ(x̂, ŷ)] is an energy functional that gives rise to the
pressure. Depending on the problem and assumptions, the mobility can take other forms
(Glasner 2008). For example, in a crowded, narrow section of cytoplasm, one could use
Darcy’s law to describe the flow through a porous medium, which reduces the mobility
to ∼ĥ (Gnann & Petrache 2018). A slip boundary, however, would enhance mobility by
introducing an additional ∼ĥ2 term (Zhang, Sprittles & Lockerby 2020). The ∼M1/2

prefactor of the fluctuation term ensures that detailed balance is satisfied (Durán-Olivencia
et al. 2019; Liu et al. 2024). The free energy F̂ depends on what forces drive the flux in
the channel, as described in the following sections.

2.2. Membrane dynamics
Deformation of the membrane, as shown in figure 1(a), results in tension and bending
forces, which lead to a change in the pressure p̂(x̂, ŷ, t̂) of the fluid in the channel. As the
membrane changes shape, so does the fluid flux in accordance with (2.1). The membrane is
idealised as an isotropic linearly elastic solid with Young’s modulus E , Poisson ratio ν and
thickness d (Landau & Lifshitz 1986). In the limit of small deflections, i.e. small spatial
gradients in ĥ(x̂, ŷ, t̂), which is natural from the scale separation, and small strains, the
coupling between the pressure in the channel and the deflection of the membrane can be
represented by the Föppl–von Kármán (FvK) equations (Audoly & Pomeau 2008; Howell,
Kozyreff & Ockendon 2008). The FvK equations incorporate the effects of both bending
and tension, the latter of which is highly coupled to the deformations in the membrane.
We consider a membrane subject to constant tension γ , which could arise from some
external stretching of the membrane at its edges (or a pressure inside an adhered cell),
which is much greater than the tension caused by local membrane deflections. Under this
assumption, the relationship between membrane deflections and channel pressure becomes
(Evans 1985; Peng & Lister 2019)

p̂elastic(x̂, ŷ, t̂) = B∇̂4ĥ(x̂, ŷ, t̂) − γ ∇̂2ĥ(x̂, ŷ, t̂), (2.3)

where B = Ed3/12(1 − ν2) is membrane bending rigidity and γ is the membrane tension
(which is analogous to the surface tension at a fluid–fluid interface). Both of these
components are generally present, but their relative strength will depend on the ratio
of the characteristic horizontal length scale of the system, L , to the bendocapillary
length lBC = √

B/γ (Deserno 2015). For L/ lBC � 1, bending should be the prominent
driving force, whereas for L/ lBC � 1, we expect membrane tension to dominate. Note
that the tension in a membrane can also be described by an integral constraint for the
membrane length (Kodio, Griffiths & Vella 2017), or by solving the full FvK to give a
more complete description of membrane deformation (Pihler-Puzović et al. 2013).

The pressure terms in (2.3) can be formulated as a gradient flow of (2.2) as the two
contributions can be rewritten as functional derivatives of free energies. The bending
energy is F̂bend [ĥ(x̂, ŷ)] = ∫

(B/2)|∇̂2ĥ|2 d Â and the surface energy is F̂γ [ĥ(x̂, ŷ)] =∫
(γ /2)|∇̂ĥ|2 d Â.
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2.3. Dynamics of adhesive molecules
When proteins or other adhesive molecules bind across the gap between the two
membranes, additional forces are generated that contribute to the pressure p̂(x̂, ŷ, t̂)
(Carlson & Mahadevan 2015a,b). Here, we use a Hookean elastic spring model to describe
how bound proteins resist stretching and compression. Given a concentration ĉ(x̂, ŷ, t̂) of
the bound adhesive molecules, an additional contribution to the pressure p̂adh takes the
form

p̂adh(x̂, ŷ, t̂) = κ(ĥ(x̂, ŷ, t̂) − l)ĉ(x̂, ŷ, t̂), (2.4)

where l is the equilibrium bond length and κ is the spring coefficient.
To determine ĉ(x̂, ŷ, t̂), we use a minimal description of the chemical kinetics of a

single protein species, a full description of this model is given in Appendix A (Bell,
Dembo & Bongrand 1984; Carlson & Mahadevan 2015a). The adhesive molecules are
assumed to be uniformly distributed on both surfaces at a constant concentration c0. The
concentration of pairs of unbound proteins is thus c0 − ĉ(x̂, ŷ, t̂). The molecules can bind
or unbind at a rate of (c0 − ĉ)Kon or ĉKoff, respectively. The rate constant for binding,
Kon , is a Gaussian distribution about the equilibrium length of the bond, l, with a standard
deviation σ ; whereas the rate constant for unbinding, Koff, is constant (Bell et al. 1984;
Qi et al. 2001). Furthermore, we assume that the molecular dynamics of binding/unbinding
are much faster than the time scale of viscosity-mediated membrane deformation, so that
the adhesive molecule concentrations immediately adjust to the equilibrium values for
a specific membrane height. Balancing the binding and unbinding rates then gives us
the following expression for the concentration of a single species of bound molecules
(Carlson & Mahadevan 2015b):

ĉ(x̂, ŷ, t̂) = c0

exp
(
−((ĥ(x̂, ŷ, t̂) − l)/σ )2

)
exp

(
−((ĥ(x̂, ŷ, t̂) − l)/σ )2

)
+ τon/τoff

, (2.5)

where a value of σ/ l = 0.2 is used in the results of this study and the ratio of kinetic
times for binding to unbinding is set to τon/τoff = 1/3 Carlson & Mahadevan (2015a,b).
We note that with ĉ(x̂, ŷ, t̂) given by (2.5), the molecule kinetics can be reduced to a single
function of ĥ(x̂, ŷ, t̂), meaning that we do not need to solve for ĉ(x̂, ŷ, t̂) as a variable in
our system, which would be the case if the time scale for molecules to bind or unbind were
of the order of the time scale for viscous fluid transport in the channel. The pressure given
by (2.4) and (2.5) can conveniently be written as a free energy F̂adh[h], as is described in
Appendix A.

2.4. Non-dimensional analysis
We work with non-dimensional versions of (2.1) in the remainder of this article. Different
scalings of the lengths and time are used in accordance with the dominant physical
effects for the work presented in the subsequent sections. In each case, (2.1) is left
with one non-dimensional parameter, Q, that is directly proportional to 〈|δĥ|〉, the
average amplitude of thermal fluctuations in the film (Dhaliwal et al. 2024). Here, we
outline the non-dimensionalisation used for each case; further details can be found in
Appendix B.

In § 3, we study (2.1) on a one-dimensional (1-D) domain (which represents a 2-D
film since h is the height in the z-direction), with γ = 0 in (2.3) and no adhesive
molecules/proteins. In this case, the horizontal length x̂ is scaled by the domain size L , as
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it is the only relevant horizontal length scale, the film height ĥ(x̂, t̂) is scaled by the initial
film height ĥ0 and time t̂ is scaled by τμ = 12μL6/Bĥ3

0, which is the time scale of viscous
relaxation of an elastohydrodynamic thin film and can be obtained by scaling the left-hand
side of (2.1) with the bending term on the right (Carlson 2018). With these scalings, the
dimensionless version of (2.1) is

∂h

∂t
= ∂

∂x

(
h3 ∂

∂x

(
∂4

∂x4 h

))
+ Q1-D

∂

∂x

(
h3/2η

)
, (2.6)

where Q1-D = (L/ĥ0)
√

2kB T L/Bw. Here, w is the width of the quasi-one-dimensional
(quasi-1-D) film in the y-direction.

In § 4, we study (2.1) on a 2-D domain (i.e. a three-dimensional (3-D) film), with
either γ or B set to zero in (2.3) and the protein pressure contribution described in § 2.3.
In this case, a physical horizontal length scale can be obtained by balancing the relevant
membrane pressure with the protein spring pressure (Carlson & Mahadevan 2015a).
When bending dominates, this gives L B = (B/c0κ)1/4 and while tension dominates, Lγ =
(γ /c0κ)1/2. We scale x̂ and ŷ by this length scale, ĥ by the protein equilibrium length l,
the protein concentration ĉ by c0, and t̂ by a time scale constructed as for the 1-D case, but
with the gradients scaled by the new horizontal length scale Lγ or L B . For the bending-
driven case, inserting this scaling, i.e. x̂ = L B x , ŷ = L B y and t̂ = t (12μB1/2/l3(c0κ)3/2),
gives the following dimensionless equation:

Bending (γ = 0) : ∂h

∂t
= ∇ ·

(
h3∇

(
∇4h + (h − 1)c

))
+ Q B∇ ·

(
h3/2η

)
, (2.7)

where Q B = (1/l L B)
√

2kB T /c0κ . For tension-driven films, the equivalent scalings, i.e.
x̂ = Lγ x , ŷ = Lγ y and t̂ = t (12μγ /l3(c0κ)2), give us the appropriate form of the non-
dimensional thin film equation:

Tension (B = 0) : ∂h

∂t
= ∇ ·

(
h3∇

(
−∇2h + (h − 1)c

))
+ Qγ ∇ ·

(
h3/2η

)
, (2.8)

where Qγ = (1/l Lγ )
√

2kB T /c0κ .

2.5. Finite element solver
In this article, (2.6), (2.7) and (2.8) are solved using the finite element method on a
rectangular domain. In all simulations, periodic boundary conditions are imposed in the
horizontal directions at the four boundaries. Since the film height h is a dependent variable,
simulations are performed in both 1-D and 2-D domains, which represent 2-D and 3-D
films, respectively. The source code for the simulations in this article is available on
GitHub (Dhaliwal 2025).

To solve (2.1), we set up a separate equation for the pressure p, with contributions
coming from (2.3) and (2.4). Equation (2.1) is divided into a system of two (plus an
additional one for the film curvature ∇2h(x, y, t) when there is a bending pressure)
coupled second-order partial differential equations. The system is reformulated into weak
form where boundary terms can be neglected due to the periodic boundary conditions.
The scalar fields ∇2h(x, y, t), p(x, y, t) and h(x, y, t) are then discretised with linear
elements, and the system of equations is solved using a Newton’s method solver from the
FEniCS finite element library (Logg et al. 2012). Time integration is performed using an
implicit first-order finite difference scheme. The domain and its discretisation in space and
time are chosen according to the relevant non-dimensional form presented in § 2.4. For the
1-D simulations presented in § 3.2, a domain of length L = 1 is used with 
x = 0.01 and
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t = 1 × 10−8. For the 2-D simulations presented in § 4.2, a square 100 × 100-cell grid is
used with both 
x and 
t varying in the range 1−3 (which means that L is in the range
100−300) for the various results presented.

The random vector η(x, y, t) is implemented by choosing random numbers using the
‘normal’ function in the ‘random’ class of NUMPY (Harris et al. 2020). For the numerical
solution at each time step, the two components of η(x, y, t) are each assigned a new value
at every point in the mesh. Values are drawn from a Gaussian distribution with zero mean
and a variance of 1/(
x
t) in 1-D and 1/(
x2
t) in 2-D. Due to the stochastic nature
of the problem, each individual run is not to be considered as deterministic. For each set of
parameters, we run multiple independent realisations and report the ensemble averages of
the extracted/predicted parameters.

3. Waiting time for the initiation of adhesion
Membrane adhesion is facilitated by the binding of membrane-anchored adhesive
molecules, which requires them to be in close range. It is then natural to ask: how long does
it take for fluctuations to deform the membranes sufficiently so that they can bind to initiate
adhesion? In this section, we use the model described in § 2 to study the average waiting
time for initial contact to occur. We limit the study to a 1-D periodic domain, to avoid
excessive computational costs, but expect that our results should be qualitatively similar
for a 2-D domain. The physical picture of our simplified model is shown in figure 1(a); the
two membranes are separated by a channel of viscous fluid with initial uniform thickness
h0. Although the channel height is initially only fluctuating about h0, some part of the
domain eventually reaches a critical thickness h∗ at which the two adhesive molecules
come in contact.

3.1. Rare-event theory
It is well known that thermal fluctuations can generate waves across the membrane,
where the average wave amplitudes δhq of frequency q, or ‘roughness’ of the membrane,
depends on bending moduli and tension coefficient (Helfrich & Servuss 1984; Rautu et al.
2017). If the h0 − h∗ is of the same order as δhq , then thermal fluctuations can easily
initiate binding. If h0 − h∗ is sufficiently larger than δhq , attachment of the molecules
then requires the membrane profile h(x, t) to attain a rather unlikely shape, which may
take a long time. The process can thus be thought of as h(x, y, t) fluctuating in an
energy landscape that does not favour large deviations from h0, until it eventually gets
‘lucky’ and reaches h∗ at some point in the domain. Although the waiting time for
protein binding is a random variable, the rare event theory can provide a prediction for
the ensemble-averaged waiting time, known as the Eyring–Kramers law, which states that
〈tB〉 ∼ C exp(2(F[hB(x)] − F[h0])/Q2

1-D), where 〈tB〉 is the ensemble-averaged binding
time, C is a prefactor, F[h(x, t)] is the energy of a profile h(x, t) and hB(x) is the final
binding profile (Eyring 1935; Kramers 1940; Liu et al. 2024).

If the membrane primarily exhibits tension rather than bending, i.e. L > lBC , the energy
is determined by the second term in (2.3), and the problem is analogous to the rupture of a
thin viscous liquid film with a free surface due to van der Waals forces. This problem was
recently studied by Sprittles et al. (2023), where the rare-event description based on the
Eyring–Kramers formula was validated by both numerical simulations of the stochastic
thin film equations and in molecular dynamics simulations. In this paper, these methods
are adapted to determining the binding time between two membranes when rather the
bending dominates the pressure term in (2.3).
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Figure 2. (a) Film profiles at time of attachment obtained from 15 independent solutions (centred around the
point of ‘contact’) with parameters Q1-D = 5 and h∗ = 0.3. The dotted black line represents the average of the
individual simulations and the dashed blue line represents the theoretical prediction from the Euler–Lagrange
equation. (b) Average waiting time for adhesion 〈t∗〉 as a function of (h0 − h∗)2 for different values of the noise
amplitude Q1-D. The lines represent the predicted value of 〈tB〉 from (3.2) with no free parameter. Error bars
represent the standard deviation for a set of N = 15 simulations for each data point. The shaded blue colour is
intended as a guide to the eye to emphasise the region where rare-event theory is valid, i.e. attachment events
are sufficiently unlikely.

When bending dominates over tension, i.e. L < lBC , the non-dimensional energy
functional for the 1-D membrane becomes

F[h(x)] =
∫ 1

0

1
2

(
∂2h

∂x2

)2

dx . (3.1)

The pressure term in (2.3) can be recovered by taking a functional derivative of F with
respect to h(x). Finding the average waiting time for adhesion requires finding the profile
hB(x) that minimises F[h] while also maintaining conservation of mass, which enters
as the constraint

∫ 1
0 (h − h0) dx = 0, and satisfying the periodic boundary condition. This

constrained optimisation problem can be solved using the Euler–Lagrange equation, which
gives the fourth-order polynomial profile shown by the dashed blue line in figure 2(a). The
energy corresponding to this profile is FB = 360(h0 − h∗)2. With a sharp asymptotics
analysis (see Appendix C for details), the predicted average attachment time is given by

〈tB〉 = 1
β(hB)

√
Q2

1-D
(2π)7 exp

(
720

(
h0 − h∗

Q1-D

)2
)

, (3.2)

where the parameter β is given by

β(hB) = (h0 − h∗)(2π)6
(

1
2

h3
0 + 3

8
h0(h0 − h∗)2

)
. (3.3)

We note that the expressions in (3.2) and (3.3) predict the attachment time across the
channel without any fitting parameters. They are valid in the limit of small noise, i.e.
either large h0 − h∗ or small Q1-D, such that the trajectory of initial attachment must cross
hB(x) in the energy landscape.
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3.2. Numerical predictions
Numerical simulations of (2.6) are used to test the prediction in (3.2) considering only
the effect of membrane bending. The simulations are initiated with a flat membrane of
height h0 = 1. Since there are no adhesive molecules, i.e. no force pulling/pushing on the
membrane, the minimum film height fluctuates randomly with time, occasionally reaching
a lower value than it has before. The simulations are run until the lowest point in the
film reaches the cutoff height h∗, indicating that the molecules are now within binding
range for initial attachment, and we denote this time as t∗. The point in the periodic
domain at which attachment occurs is random. If the deformation required for film rupture,
h0 − h∗, is small, attachment occurs rapidly and the profile shape at t∗ varies significantly
from simulation to simulation. When h0 − h∗ is larger, however, the minimum film height
fluctuates for a long time before reaching attachment (the number of time steps being
many orders of magnitude), often coming close many times before finally reaching h∗.
When this is the case, the individual profiles at t∗ are consistent, as shown in figure 2(a),
which suggests that attachment does indeed tend to occur at a specific minimum energy
profile.

When the value of h0 − h∗ is large, as is the case for the profiles shown in figure 2(a),
one would expect that the final profile is similar to the fourth-order polynomial predicted
theoretically in § 3.1. The dashed blue line in figure 2(a) shows that this is indeed the case
if the profiles are centred about their minimum and then averaged. This indicates that it
is truly rare for fluctuations to make the film reach h∗ and that this almost always occurs
very close to the minimum energy profile that allows attachment.

The average attachment time, 〈t∗〉, is plotted for various values of Q1-D and h∗ in
figure 2(b). It is clear that the time increases rapidly when h∗ is reduced and eventually
grows exponentially with (h0 − h∗)2 for constant Q1-D. The theoretical prediction for the
attachment time across a membrane channel from (3.2) provides an excellent quantitative
prediction for the average rupture time when h0 − h∗ is large. For smaller values of
h0 − h∗, the rare-event theory is not valid, as the membrane profile does not necessarily
cross the saddle point on its way to attachment. We note that the performance of the
theoretical prediction also depends on Q1-D, as fluctuations are more likely to cause
large deformations to the film profile, making the event less rare as well as introducing
larger errors in the Laplace method used to approximate the mean first passage time (see
Appendix C). Generally, the rare-event prediction is valid when the attachment event is
sufficiently rare, meaning that the average attachment time is sufficiently large. This can
be achieved either by having a small value of Q1-D or a large height difference h0 − h∗, as
in the blue shaded region of figure 2(b).

4. Coarsening of adhesion patches
We now turn our attention to the next stage in the dynamics, when the adhesive molecules
have formed bonds (t > 〈tB〉) that lead to a rich coarsening dynamics. To do this, we study
(2.2) with the protein binding model of (2.4) and (2.5) on a 2-D domain, where we vary
the membrane pressure term and the mobility factor.

Once adhesive molecules start to bind across the thin film, the membrane is pulled
towards the substrate at the binding site, leading to further binding of adjacent proteins
(Bell et al. 1984). This process brings the surfaces closer to each other, squeezing liquid
out laterally through the channel. Conservation of the liquid, however, may lead to
distinct regions where the membrane separation is small and proteins are bound or where
membrane separation is large and proteins unbound, as is depicted in figure 1(c) (Fenz
et al. 2017; Dinet et al. 2023). The network of unbound domains containing excess liquid
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may then coarsen to reduce the deformation of the membrane, i.e. reducing the overall
energy of the system. Smaller pockets/lumen-like structures shrink as liquid is transported
towards larger pockets/lumens, which subsequently grow in size. Such coarsening is
reminiscent of when liquid droplets form in a dewetting liquid thin film (Otto et al. 2006).
It also falls into the broader category of coarsening dynamics in physical systems, which
has been extensively studied both theoretically and experimentally (Hohenberg & Halperin
1977; Furukawa 1985; Bray 1994; Camley & Brown 2011; Cates 2022). We will now
describe how our model fits into this context, demonstrating that elastohydrodynamic thin
films display distinct coarsening behaviour due to the combined effects of elasticity and
viscosity.

4.1. Domain coarsening of adhered patches
Equation (2.1) can be seen as the governing equation of a dynamical phase field, in
which the film height h(x, y, t) is the sole order parameter (McLeish et al. 2003; Cates
2022). When coupled with the pressure term given by (2.3), it is in fact quite similar
to the widely studied dynamical model B, which is used to describe the coarsening
of a conserved order parameter (Hohenberg & Halperin 1977). Nevertheless, a number
of features distinguish our system. First, a nonlinear ∼h3 mobility (as described in
§ 2.1) arises from the lubrication flow in the narrow channel. Second, rather than the
typical double-well potential, our system imposes an energy landscape arising from the
adhesive molecules/proteins described in § 2.3 and Appendix A. Finally, and perhaps most
significantly, the classical Cahn–Hilliard Laplacian free energy term (which, in this case,
represents isotropic membrane tension) is supplemented by the fourth-order bending term
as described in (2.3).

A quantitative understanding of phase separating systems is achieved through the
dynamical scaling hypothesis, which states that in the later stage of a coarsening process,
the domain structure of a system (as quantified by the structure function S(k, t) =
〈hk(t)h−k(t)〉) is constant in time if one rescales the lengths by a single characteristic
length scale Lc(t) (Bray 1994; Camley & Brown 2011). This concept has been shown to
be valid both numerically and experimentally in many systems, with power-law growth
displayed when Lc(t) is computed as a moment of S(k, t) or the radius of individual
particles (Furukawa 1985; Shinozaki & Oono 1993; Sung et al. 1996; Tateno & Tanaka
2021; Saiseau et al. 2024; Su et al. 2024). For coarsening of the aforementioned model
B system, Lc(t) is known to grow according to a ∼t1/3 power law, as has been validated
by a number of numerical studies (Vladimirova, Malagoli & Mauri 1998; Tiribocchi et al.
2015), and can also be predicted theoretically using scaling arguments, renormalisation
group theory or Lifshitz–Slyozov–Wagner theory (in the limit where the minority phase
occupies a small volume fraction) (Lifshitz & Slyozov 1961; Wagner 1961; Bray 1994;
Camley & Brown 2011).

For the case where the bending energy drives coarsening rather than surface tension, it is
unclear if the coarsening rate will follow the ∼t1/3 power law. This essentially corresponds
to replacing the surface tension contribution to the classical free energy functional,
Fγ (h(x, y)) = ∫

(1/2)|∇h|2 dA, by the corresponding bending term Fbend(h(x, y)) =∫
(1/2)(∇2h)2 dA. We now follow the derivation of Bray (1994) to make a scaling

prediction for how bending changes the coarsening dynamics (details are provided in
Appendix D.2). We ignore the effects of the nonlinear mobility as well as the specifics of
the potential function. In analogy with the coarsening literature, we note that the pressure
in our system takes a form that can be interpreted as a chemical potential Φ (Hohenberg &
Halperin 1977; Bray 1994; Cates 2022). We thus adopt the notation p ≡ Φ = δF/δh,
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where F consists of the aforementioned bending term and a symmetric double-well
potential function V (h). The chemical potential is thus

Φ = ∂V

∂h
+ ∇4h (4.1)

and the film height then evolves according to a continuity equation with flux j = −∇Φ.
In late-stage coarsening when motion of the interface between two domains is slow,

diffusion of the order parameter h and chemical potential Φ in the bulk is fast, so both
should satisfy Laplace’s equation ∇2h = ∇2Φ = 0 in the bulk regions. The flux through
the interface, and thus by continuity the velocity of the interface, can then be determined
by finding Φ at the interface.

At an interface between the two phases with radius of curvature R, Φ can be
re-expressed in terms of the coordinate g representing distance along the unit vector ĝ
in the direction perpendicular to the interface (g = ±∞ in the bulk and g = 0 at the centre
of the interface). Noting that ∇h = (∂h/∂g) ĝ and ∇ · ĝ = 1/R near the interface, we find
that

Φ = ∂V

∂h
+ ∂4h

∂g4 + 2
R

∂3h

∂g3 − 1
R2

∂2h

∂g2 + 1
R3

∂h

∂g
. (4.2)

The value of Φ at the interface is then determined by multiplying (4.2) by ∂h/∂g and
integrating across the interface from g = −∞ to g = ∞. By imposing the boundary
condition that h is constant in the bulk and assuming that the chemical potential is a
double well with equal potential on both sides, integration gives

Φ
h = − 2
R

∫ ∞

−∞

(
∂2h

∂g2

)2

dg + 1
R3

∫ ∞

−∞

(
∂h

∂g

)2

dg, (4.3)

where 
h is the height difference between the domains on the inside and outside of the
interface, and the integrals −2

∫∞
−∞(∂2h/∂g2)2 dg and

∫∞
−∞(∂h/∂g)2 dg can effectively

be interpreted as 2-D line tension-like coefficients Γ1 and Γ2 that represent an energy
per unit length associated with the existence of the interface between the two phases in
2-D space. Equation (4.3) thus represents a Gibbs–Thomson-like boundary condition that
determines the value of Φ on interfaces with radius of curvature R. Since the flux of fluid
is proportional to the gradient of the chemical potential (assuming a constant mobility), the
velocity of the interface scales as −∂Φ/∂g. Assuming that the domains are circular with
radius R corresponding to the macroscopic length scale Lc, this then gives the following
growth law for bending-driven coarsening:

dLc

dt
∼ Γ1

L2
c

+ Γ2

L4
c
. (4.4)

Equation (4.4) stands in contrast to the model B case which has only a single
contribution to the line tension, giving rise to an ∼L−2

c growth rate. This suggests that
bending-driven coarsening should have a coarsening rate with an exponent somewhere
between 1/3 and 1/5 with time, with the value being determined by the relative sizes of
Γ1 and Γ2, which in turn depend on the shape of the potential function. We note that this
simple scaling prediction only describes the difference between surface tension-driven and
bending-driven coarsening. It does not take into account the other differences between our
model and the classical model B system described by Bray (1994) such as the ∼h3 mobility
and the protein binding potential energy. Since the potential energy function V (h) is not
specified, we expect these results to be valid for other adhesive potentials such as van
der Waals interactions. Equation (4.4) suggests a fundamental distinction between surface
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Figure 3. Contour plots illustrating the height h(x, y, t) of thin films in a 2-D domain under the influence of
protein binding and unbinding for different times t , with h0 = 1.4. In panel (a), the fluctuation parameter is
Q B = 0.005, whereas in panel (b), it is set to Q B = 0.5. Although similar coarsening dynamics occur at late
times regardless of Q B , the size of the domains at t = 350 is somewhat larger for Q B = 0.5 due to early-time
coalescence.

tension-driven and bending-driven coarsening, which will be investigated numerically for
our specific system in § 4.2.

4.2. Numerical investigation of bending-driven coarsening dynamics
We now present the results of numerical simulations of the phase separation of adhesive
molecules/proteins during membrane adhesion when dominated by bending of the
membrane, as described in (2.7). The membrane is always initialised as a flat profile with
non-dimensional initial height h(x, y, 0) = ĥ0/ l > 1 and the non-dimensional width of
the protein binding rate distribution, σon/ l = 0.2. Figure 3(a) shows the contour plots
(see supplementary movie 1 available at https://doi.org/10.1017/jfm.2025.10872) of the
film profile at three different times when the initial film height is just at the edge of the
range in which the proteins can bind. Fluctuations are clearly present for the first time
steps, where the film is pulled to the substrate by the adhesive molecules. Most of the film
profile moves towards the equilibrium length of the adhesive molecules (h = 1 in non-
dimensional terms) to reduce the energy of the system. Due to conservation of liquid mass,
excess liquid must flow somewhere else, but periodic boundary conditions prevent fluid
from leaving the domain. Thus, in some regions, the film is pushed up, forming circular
‘pockets’ or ‘lumens’ in which proteins are unbound and the film height is significantly
larger than the initial height, as can be seen in the first panel to the left in figure 3(a).

With time, the detached domains coarsen in an Ostwald ripening-like process, resulting
in fewer, larger domains as can be seen in the second and third panels of figure 3(a).
Once the circular pockets form, their centres remain essentially fixed as fluid is slowly
transported from smaller to larger domains in a diffusion-like manner. When the size
of a single pocket drops below a critical threshold, it suddenly ‘implodes’, which
causes a minor horizontal rearrangement of nearby domains (see supplementary movies).
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Figure 4. Length scale Lc computed using (D5) from the average of N = 15 individual simulations under the
same conditions as the data in figure 3. In panel (a), the fluctuation parameter is Q B = 0.005, whereas in panel
(b), it is set to Q B = 0.5. Power law coarsening with an exponent well below 1/3 is observed in both cases, but
starts off with a larger domain size when Q B = 0.5.

Figure 4(a) shows the time evolution of the characteristic size Lc for these domains, as
computed using the method of Shinozaki & Oono (1993), averaging the structure factor
S(k, t) across 15 independent realisations (details of how we calculte Lc are provided
in Appendix D.1). Although the distinct ‘implosion’ events lead to discrete jumps in
the growth for an individual simulation, the ensemble-averaged Lc grows smoothly with
time following a power law. The growth is significantly slower than the ∼t1/3 power law
observed for a model B system (Bray 1994; Tiribocchi et al. 2015), instead, the exponent
is closer to 1/5, which can be expected based on our analysis in § 4.1.

The contour plots in figure 3(b) show the evolution of height profiles of a coarsening
film when the amplitude of the thermal fluctuations, represented by the parameter Q B ,
is increased by two orders of magnitude. With higher noise amplitude, the lumens are
irregular in shape and constantly deforming (see supplementary movie 2). The fluctuations
also cause significant lateral motion of the domains, which leads to some instances of
coalescence at very early times. Despite this, at the later time, large droplets seem to repel
each other and domain growth is primarily caused by fluid flow through adhered patches,
as was observed in the low noise amplitude case. Interestingly, the power law for domain
growth is relatively unaffected by the strength of the fluctuations, as shown in figure 4(b).
The size of the domains before the late-stage power law growth is somewhat higher when
the fluctuations are larger, perhaps due to coalescence events at early times, as can be seen
in the first panels of figure 3(a,b). The primary effect of fluctuations is thus to provide
the perturbations that trigger the instabilities giving rise to the initial configuration, rather
than driving coarsening.

To better understand how and why the coarsening rate of our system differs from the
more familiar model B system, we perform additional simulations in which we vary the
initial membrane height h0, the fluctuation strength Q, the mobility prefactor in the thin
film equation and which term in (2.3) we use. In general, we find that coarsening behaviour
is a preserved feature of the system even when these parameters are changed. To ensure
an initial configuration with many small pockets in the domain, h0 should be close to the
edge of the binding range of the adhesive molecules. If h0 is too small, the entire domain
is already in a bound state and few pockets form. If, however, h0 is too large, it takes a very
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Figure 5. Contour plots illustrating the height h(x, y, t) of thin films in a 2-D domain under the influence of
protein binding and unbinding for different times t , with Qγ = 0.01. In panel (a), the initial height is h0 = 1.25,
whereas in panel (b), it is set to h0 = 1.45. Increasing h0 leads to a larger initial domain size, but slower
coarsening at late times.

long time for contact to occur, which is typically at only one point in the domain, leading
to a small number of initial pockets when coarsening starts.

To begin with, we simulate coarsening using the tension term of (2.3) (corresponding
to the well-studied Cahn–Hilliard free energy) instead of the bending term, as in (2.8).
As expected, coarsening behaviour is observed, as shown in figure 5. Comparing the first
snapshots of figures 5(a) and 5(b) demonstrates that larger initial heights lead to fewer
domains at early times. At later times, we observe that the coarsening actually appears to
be slower when h0 is increased.

Figure 6(a) shows how the characteristic length scale Lc of a viscous film profile grows
with time when the membrane exhibits only interfacial tension. When h0 is small, the
growth exponent is close to ∼t1/3, in accordance with what one expects for the well-
known model B system. For higher values of h0, the growth rate for late-stage coarsening
decreases. This seems to be caused by the nonlinear ∼h3 term arising from the viscous
resistance to flow in the governing equation. To confirm this, we perform additional
simulations in which we replace the nonlinear mobility by a constant mobility with value 1.
The inset in figure 6(a) shows that Lc ∼ t1/3 growth is observed regardless of h0 when the
mobility is constant, as expected.

In figure 6(b), similar results are presented, but this time, the tension term in (2.3) is
replaced by the bending term, i.e. we set γ > 0 and B = 0, and solve 2.8. As suggested by
the theory in § 4.1, the power law for bending-driven coarsening is reduced from Lc ∼ t1/3.
The inset in figure 6(b) shows that this is indeed the case when the mobility is kept
constant, with a growth exponent of approximately 1/4 consistently observed. For the
viscous case, there is a decrease in the growth exponent when the value of h0 is increased,
but this effect is not as pronounced as it is for the tension-driven films.

The decreased coarsening rate as h0 is increased may seem counterintuitive at first
glance, as a thicker film should lead to less viscous resistance to fluid flow and thus a
higher mobility. In the coarsening process, however, the fluid flow between pockets must
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Figure 6. (a) Scaling length Lc as a function of time for tension-driven coarsening in a viscous film with
varying h0 when Qγ = 0.01. Lc is calculated from the average S(k, t) for N = 22 independent simulations.
The inset shows the results when a constant mobility is used instead. (b) Scaling length Lc as a function of
time for bending-driven coarsening in a viscous film with varying h0 when Q B = 0.01. Lc is calculated from
the average S(k, t) for N = 20 independent simulations. The inset shows the results when a constant mobility
is used instead.
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Figure 7. (a) Scaling length Lc as a function of time for tension-driven coarsening in a viscous film with
varying Qγ . These results are for h0 = 1.25 and the Lc is calculated from the average S(k, t) for N = 22
independent simulations. (b) Scaling length Lc as a function of time for bending-driven coarsening in a viscous
film with varying Q B . These results are for h0 = 1.4 and the Lc is calculated from the average S(k, t) for
N = 15 independent simulations.

pass through the adhered region, where the film height is fixed at the equilibrium height
of the adhesive molecules (h = 1), thus restricting the mobility of the flow through this
region. Increasing h0 thus only increases the depth of the pockets, which decreases the
flux through the interface between the pocket and the attached region.

Figure 7 shows the coarsening behaviour for both tension-driven and bending-driven
viscous films as Q is varied by two orders of magnitude. In both cases, the value of Lc at
the beginning of coarsening is larger when the fluctuations are increased to Q = 0.5, due
to increased coalescence at very early times. In the bending case, large fluctuations also
lead to an earlier onset of the power-law coarsening regime, as can be seen in figure 7(b).
During the late coarsening stage, however, fluctuations do not play a significant role.
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In figure 7(a), we observe that increasing the magnitude of fluctuations leads to a slight
decrease in the power law for tension-dominated films, while figure 7(b) shows that
changing Q B does not seem to significantly affect the power law of bending-dominated
films. This seems to suggest that the main role of the fluctuations is simply to provide
perturbations at early times which initiate the adhesion process.

5. Discussion
We have demonstrated that the waiting time for membranes to come into contact
across a viscous channel can be effectively predicted by the rare-event theory. Although
computational concerns limited the present study to 1-D films, the methods we present can
be extended to two dimensions. In that case, the rare-event prediction will have the same
form, but a modified prefactor. Our results demonstrate the utility of rare-event theory in
predicting the average time for important but unlikely events to occur in stochastic systems.
Such statistical techniques are relevant in many biological systems where rare events
caused by stochastic fluctuations may be necessary for important biological processes
(Chou & D’Orsogna 2014). Although the adhesion of live cells often involves active
cellular machinery such as actomyosin and filopodia to help cells bind, our results may
be useful for estimating the likelihood that cells may come into contact when such active
mechanisms are absent and may help to distinguish between actively and passively driven
dynamics.

The membrane coarsening results of § 4 present a minimal mathematical description of
coarsening behaviour similar to the recent experiments of Dinet et al. (2023). In their
experiments, an osmotic shock is applied to GUVs initially attached through biotin–
neutravidin bonds to a supported lipid bilayer, pushing liquid from inside the GUV
into the membrane–membrane channel, forming small unattached lumens. As the system
evolves, the smaller lumens shrink and eventually disappear, while larger lumens grow.
Our work suggests a physical model to explain the intrinsic coarsening process in
those experiments. Based on the results of § 4, one would expect to observe power-law
coarsening of the domains in such experiments. Unfortunately, the data in the experiments
of Dinet et al. (2023) are not quite amenable to study the coarsening law because the
separate processes of fluid flux through the membrane into the channel, flux of fluid
from pocket to pocket and flux of fluid from the pockets to the exterior region are all
occurring simultaneously. Nevertheless, it points to experimental realisations allowing
for the observation of the predicted power-law coarsening dynamics by isolating the
interluminal coarsening process, e.g. by using a larger GUV so the centre of the adhesion
patch is not as affected by flux to the outside.

Our work provides a framework for understanding coarsening exponents in thin films.
The results of § 4.2 provide a scaling-based prediction that the power-law exponent
is smaller for bending-driven than for tension-driven coarsening. A more rigorous
prediction of the growth rate for bending-driven coarsening might be feasible applying
renormalisation group theory, as is described by Bray (1994). Whether a physical system
falls under the bending- or tension-dominated regime depends on the ratio of the
characteristic length scale of the domains to the bendocapillary length scale, Lbc = √

B/γ .
As such, there may be a cross-over between the two power-law regimes as the domain size
grows past Lbc during coarsening. Observing this, however, would require simulations of
growth across a larger range of length scales than that shown in this study. An estimate of
Lbc based on typical values for biological membranes is smaller than the size of lumens
in the experiments of Dinet et al. (2023), which suggests that tension should dominate
for that system. Even so, we would expect a growth exponent with time that is smaller
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than ∼t1/3 due to the nonlinear mobility coming from the fluid viscosity. It would also
be interesting to see if the coarsening rate would be altered if one were to change the
membrane properties to have a larger value of Lbc.

The membrane deformation containing just the bending and isotropic tension terms
(see § 2.2) is a simplification that ignores the fact that the tension will be affected by
deformation (Landau & Lifshitz 1986; Peng & Lister 2019). This allows us to characterise
some aspects of how bending and isotropic tension act differently, but prevents us from
getting a full understanding of how the deformation of a thin elastic sheet affects the
dynamics of adhesion and coarsening. To complete the picture, the full Föppl–von Kármán
equations could be implemented to properly describe stretching in the membrane (Lister,
Peng & Neufeld 2013; Pihler-Puzović et al. 2013).

Another observation to highlight is that the noise amplitude seems to have no effect on
the power law for the coarsening process in both tension- and bending-dominated regimes.
This is not true, however, for the spreading of droplets on a flat substrate, which can be
seen as the coarsening of a single lumen. In the tension-dominated regime, as the droplet
spreads, the growth of its radius follows the classical Tanner’s law (Tanner 1979) if the
system is deterministic and follows a fluctuation-enhanced Tanner’s law (Davidovitch et al.
2005) in the presence of noise. In the bending-dominated regime, a different power law
for growth was also found for deterministic (Lister et al. 2013) and stochastic (Carlson
2018; Pedersen et al. 2019) systems. One key difference between our set-up and droplet
spreading is the presence of bound adhesive molecules, which keeps the membrane fixed
at a constant height in the adhered region. Another difference is that instead of a single
droplet, we have a network of pockets connected by adhesion patches.

Our numerical results predict that coarsening is slower for larger initial heights in
viscous, tension-driven coarsening, which is directly relevant to coarsening in dewetting
liquid films. Experiments on dewetting nanometric polymer films by Limary & Green
(2003) indeed showed that the coarsening exponent was smaller when the initial film
height was increased. Although the driving potential in such a system comes from the
surface energies of the materials rather than protein-like binding, the governing equations
should otherwise be the same and we would expect similar dynamics. Further work on this
problem could lead to a more complete understanding of how and why an increased initial
film height delays coalescence.

Finally, a future interesting avenue to explore would be looking into experimental
systems of elastohydrodynamic coarsening beyond a biological context. The predicted
coarsening exponent (§ 4.1) is not specific to the molecular binding-based adhesive
potential in our model, so similar coarsening dynamics should be observed even if the
adhesive force in (2.4) is replaced by some other physical mechanism. For example,
if liquid is trapped between two thin elastic sheets grafted with polymer brushes that
are attracted to each other (Mani, Gopinath & Mahadevan 2012), one might observe
coarsening of non-adhered pockets quite similar to the observations in our simulations.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2025.10872.

Acknowledgements. We thank Sami Al-Izzi for stimulating discussions and funding from the UiO:Life
Science.
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Appendix A. Adhesive molecule kinetics
In this section, we present the simple model used for the kinetics of the adhesive molecule
bond occuring across the intermembrane channel. In biological systems, this typically

1024 A20-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
87

2 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10872
https://doi.org/10.1017/jfm.2025.10872


Journal of Fluid Mechanics

corresponds to the bond between two membrane-anchored proteins across the extracellular
gap. The proteins are assumed to be present at all times on both sides of the channel at
a constant concentration c0. The concentration of bound proteins at a particular location
is denoted as ĉ(x̂, ŷ, t̂). If proteins bind with a rate constant Kon and unbind with a rate
constant Koff, the dynamics of ĉ(x̂, ŷ, t̂) is governed by (assuming that diffusion and the
flow are slow compared with the binding kinetics)

∂ ĉ

∂ t̂
= (c0 − ĉ)Kon − ĉKoff. (A1)

The binding rate constant Kon is represented as a probability of crossing an energy barrier
and is dependent on the film height ĥ with a maximum likelihood of binding at ĥ = l (Bell
et al. 1984). The off rate, Koff, is taken as a constant (Qi et al. 2001),

Kon = 1
τon

exp
(

−
(
(ĥ(x̂, ŷ, t̂) − l)/σ

)2
)

, Koff = 1
τoff

, (A2)

where l is the equilibrium length of the intermembrane protein bond, σ is the width of the
kinetic binding zone, and τon and τoff are kinetic times.

For this system, if the protein kinetics is allowed to relax much faster than the time
scale of film deformation, we can assume the bound protein concentration ĉ to be quasi-
constant (Carlson & Mahadevan 2015b). At chemical equilibrium, (A1) leads us to express
the equilibrium concentration ĉeq as

ĉeq(ĥ(x̂, ŷ, t̂)) = c0
Kon

Kon + Koff
, (A3)

which gives us the expression for ĉ(ĥ) in (2.5). In our simulations, we take the
dimensionless binding distribution width σ/ l to be 0.2, as was used by Carlson &
Mahadevan (2015a,b) to describe TCR–pMHC bonding in the immune synapse, although
we note that defining precise values for this parameter is difficult and that higher values
may be relevant (Qi et al. 2001). We use a value of 1/3 for the binding/unbinding time
scale ratio τon/τoff. Although the values chosen for σ/ l and τon/τoff are rather arbitrary,
and not connected to any specific molecular interaction, we observe little change in our
results when these parameters are altered. The same coarsening behaviour is observed as
long as h0 is set just above 1 + σ/ l.

Finally, we note that the pressure contribution from the bound proteins, as described in
(2.4) with ĉ(ĥ) given by (A3), can be written as the functional derivative of a free energy
with respect to the film profile ĥ(x̂, ŷ),

Fadh[h] =
∫

−c0κσ 2

2

(
ln

[
exp

(
−(ĥ(x̂, ŷ, t̂) − l)2

σ 2

)
+ τon

τoff

])
dA. (A4)

This corresponds to a single energy well, as is shown in figure 8. Taking the functional
derivative δFadh/δh gives the adhesion pressure term in (2.4) with the concentration given
by (2.5).

Appendix B. Non-dimensionalisation of equations
As mentioned in § 2.5, we non-dimensionalise the governing equations before computing
our numerical solutions. In this section, we provide the details of how we have done so for
each of the cases discussed in §§ 3 and 4.
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Figure 8. Plot of the energy density from (A4). The energy density F is non-dimensionalised by c0κl2 and
the height by l. The binding distribution width is set to σ/ l = 1/5 and the time scale ratio is τon/τoff = 1/3.

B.1. Attachment simulations
For the simulations to estimate the binding time of a fluctuating film, a quasi-1-D domain
of length L in the x-direction and width w in the y-direction is considered. Since we are
focused on the effects of bending, tension is not included. We also ignore the protein-
binding term since we are interested in how long it takes to reach the values of h where
these become significant (similar results are observed when they are included, but the
theoretical calculation is more challenging). Under these circumstances and considering
the bending-dominated case, the 1-D version of (2.1) simplifies to

∂ ĥ(x̂, t̂)

∂ t̂
= ∂

∂ x̂

(
ĥ( ˆ̂x, t̂)3

12μ

∂

∂ x̂

(
B

∂4

∂ x̂4 ĥ(x̂, t̂)

))
+
√

kB T

6μw

∂

∂ x̂

(
ĥ(x̂, t̂)3/2η̂(x̂, t̂)

)
. (B1)

The finite width w must be included here since thermal flucutations are inherently a 3-D
phenomenon, but will in the end be absorbed into the prefactor of the stochastic term
(Grün et al. 2006). We non-dimensionalise (B1) by introducing the scaling relations:

ĥ = hh0, x̂ = x L t̂ = t
12μL6

Bh3
0

, η̂ = η

√
Bh3

0
12μL7 , (B2)

where the dimensionless variables are without hats. The time is scaled by a characteristic
time scale on which bent elastohydrodynamic thin films relax (Carlson 2018) (which can
be obtained by scaling the left-hand side of (B1) with the first term on the right-hand side),
and η is scaled by a dimensionally correct combination of the time and horizontal length
scales. When these relations are inserted into (B1), the dimensionless thin-film equation
becomes

∂h

∂t
= ∂

∂x

(
h3 ∂

∂x

(
∂4

∂x4 h

))
+ Q1-D

∂

∂x

(
h3/2η

)
. (B3)
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The non-dimensional number Q1-D = (L/h0)
√

2kB T L/Bw represents the strength of the
thermal fluctuations in the domain. In fact, Q1-D is directly proportional to the thermal
roughness of the film by the relation Q1-D = (〈|δĥ|〉/h0)(360)−1/2, where 〈|δĥ|〉 is the
thermal roughness of a film.

B.2. Coarsening simulations
For the simulations of coarsening in thin films, a 2-D domain was used and the non-
dimensionalisation of the equations is different as opposed to the attachment simulations.
In this section, we decribe how (2.1) is non-dimensionalised when the protein dynamics
of (2.4) is included. The approach is different in the bending-driven and tension-driven
cases because in each case, the horizontal length scale is non-dimensionalised by the
characteristic domain size obtained by balancing the protein forces with the driving
membrane force (Carlson & Mahadevan 2015a).

B.2.1. Bending driven
When coarsening is driven by bending, (2.1) becomes

∂ ĥ

∂ t̂
= ∇̂ ·

(
ĥ3

12μ
∇̂
(

B∇̂4ĥ + κ(ĥ − l)c
))

+
√

kB T

6μ
∇̂ · (ĥ3/2η̂

)
. (B4)

We non-dimensionalise (B4) by introducing the scaling relations

ĥ = hl, x̂ = x

(
B

c0κ

)1/4

, ŷ = y

(
B

c0κ

)1/4

,

t̂ = t
12μB1/2

l3(c0κ)3/2 , ĉ = cc0, η̂ = η
c0κl3/2

(12Bμ)1/2 , (B5)

where the dimensionless variables are without hats. The characteristic horizontal
length scale by which x and y are non-dimensionalised, (B/c0κ)1/4, comes from a
balance between the protein spring pressure and the bending pressure, and describes the
characteristic length scale of protein domains (Carlson & Mahadevan 2015a). The time
scale comes from a balance of the left-hand side term in (B4) with the bending pressure
term, using the aforementioned horizontal length scale to scale the gradient ∇̂. When
these scalings are introduced into (B6), the dimensionless thin film equation becomes

∂h

∂t
= ∇ · (h3∇(∇4h + (h − 1)c

))+ Q B∇ · (h3/2η
)
. (B6)

The non-dimensional number Q B = (1/ l)
√

2kB T /B1/2(κc0)1/2 represents the strength
of the thermal fluctuations in the domain. In fact, Q B is directly proportional
to the average amplitude of thermal fluctuations of the film by the relation
Q B ∼ (〈|δĥ|〉/ l)((B/(c0κ))1/4/L), where 〈|δĥ|〉 is the thermal roughness of a film.
A physical interpretation for Q B is thus a non-dimensionless thermal roughness of the
film, although the amplitude is dependent on the domain size, which is an inherent and
poorly studied feature of thermal fluctuations in such films.

B.2.2. Tension-driven
When coarsening is driven by tension, (2.1) becomes

∂ ĥ

∂ t̂
= ∇̂ ·

(
ĥ3

12μ
∇̂(− γ ∇̂2ĥ + κ(ĥ − l)ĉ

))+
√

kB T

6μ
∇̂ · (ĥ3/2η̂

)
. (B7)
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We non-dimensionalise (B7) by introducing the scaling relations

ĥ = hl, x̂ = x

(
γ

c0κ

)1/2

, ŷ = y

(
γ

c0κ

)1/2

,

t̂ = t
12μγ

l3(c0κ)2 , ĉ = cc0, η̂ = η
(c0κ)3/2l3/2

(12μ)1/2γ
, (B8)

where the dimensionless variables are without hats. The characteristic horizontal length
scale by which x and y are non-dimensionalised, (γ /c0κ)1/2, comes from a balance
between the protein spring pressure and the interfacial tension, and describes the
characteristic length scale of protein domains. The time scale comes from a balance of
the left-hand side term in (B7) with the tension term, using the aforementioned horizontal
length scale to scale the gradient ∇̂. When these scalings are introduced into (B7), the
dimensionless thin film equation becomes

∂h

∂t
= ∇ · (h3∇(− ∇2h + (h − 1)c

))+ Qγ ∇ · (h3/2η
)
. (B9)

The non-dimensional number Qγ = (1/ l)
√

2kB T /γ represents the strength of the thermal
fluctuations in the domain. In fact, Qγ is directly proportional to the average amplitude
of thermal fluctuations of a freely fluctuating film subjected to interfacial tension by the
relation Qγ ∼ (〈|δĥ|〉/ l), where 〈|δĥ|〉 is the thermal roughness of a film without the
protein binding term. A physical interpretation for Qγ is thus a non-dimensionless thermal
roughness of the film, which for a tension-dominated film is not dependent on L . This has
in fact been verified numerically in a previous work where the length scale 〈|δĥ|〉 was
calculated directly (Dhaliwal et al. 2024).

Appendix C. Rare-event theory
To predict the average waiting time (mean first passage time) for proteins to bind, we
apply the rare-event theory for a gradient flow following the procedure outlined by Liu
et al. (2024), with a simple modification in the asymptotic since the system is not bistable,
that is, the transition is not from one local minimum to another. For the mean first passage
time of a non-gradient system, the reader can refer to Grafke, Schäfer & Vanden-Eijnden
(2024). To make the derivation more general and easier to follow, we will first derive the
formula of the mean first passage time for a general gradient flow and then demonstrate
the application to the elastohydrodynamic thin film equation.

C.1. Mean first passage time for gradient flow
Let us first formalise the problem. Consider a general stochastic differential equation
describing a gradient flow

dXt = −M(Xt )∇F(Xt ) dt + √
2εM1/2(Xt ) dWt , (C1)

where Xt ∈R
n is a random variable, M(Xt ) :Rn →R

n×n is the semi-positive definite
mobility matrix (or mobility operator), F(Xt ) is some free energy of the system, ∇ is
the gradient with respect to Xt , ε is the noise amplitude, M1/2(Xt ) :Rn →R

n×n is the
‘square root’ of the mobility, namely M1/2 MT

1/2 = M (T stands for transpose or Hermitian
adjoint), and Wt is the n-dimensional Brownian motion. It describes a system driven by
the negative gradient of energy, i.e. a force that minimises the energy locally, while being
disturbed by a Gaussian white noise. For simplicity, let −M(Xt )∇F(Xt ) = b(Xt ) and
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√

2M1/2(Xt ) = ξ(Xt ), then (C1) is

dXt = b(Xt ) dt + √
εξ(Xt ) dWt . (C2)

Assume there is a stable fixed point xA such that b(xA) = 0, and the time it takes for the
system to first exit a basin of attraction D of xA starting at x ∈ D is denoted as

TB(x) = inf{t > 0|Xt /∈ D}. (C3)

We are interested in the the mean first passage time, wB(x) =E[TB(x)], that is, the
expectation of TB , which fulfils the inhomogeneous stationary Kolmogorov (Gardiner
2009) {

LwB(x) = −1 for x ∈ D,

wB(x) = 0 for x ∈ ∂ D,
(C4)

where ∂ D is the boundary of the basin of attraction D. Here, we choose D such that there
is a global minimum xB of F(x) on ∂ D, and the normal vector n̂ of ∂ D pointing outwards
at xB aligns with ∇F , that is, ∂ D is tangent to the contour line of the energy landscape
only at xB . Here, L is the generator of (C2),

L= b(x) · ∇ + 1
2
εa(x) : ∇∇, (C5)

where a(x) = εξ(x)ξ T (x) is the noise covariance matrix and: is the scalar product. From
the generator, we can deduce the invariant distribution ρ∞(x) through the stationary
Fokker–Planck equation

L†ρ∞ = 0, (C6)

where L† is the L2-adjoint of the generator

L†◦ = −∇ · (b(x) ◦) + 1
2
ε∇∇ : (a(x) ◦). (C7)

In the case of a gradient flow (C1), one can show that the invariant distribution is given as
the Gibbs distribution

ρ∞(x) = Ce−F(x)/ε, (C8)

where C is some constant. This will be used later in calculating the mean first passage time,
which becomes significantly more complex if a form other than the Gibbs distribution is
used. From the large deviation theory (Freidlin, Szucs & Wentzell 2012), we know that for
ε → 0,

wB(xA) � e
F/ε, (C9)

where 
F = (F(xB) − F(xA)). In other words, for the limiting case of small noise
amplitude ε, the process almost certainly exits the basin of attraction D at the saddle
point xB , and the mean first passage time scales exponentially with the energy barrier
between xA and xB with some unknown prefactor. To calculate the prefactor, we define a
new random variable

τ(x) = e−
F/εwB(x), (C10)

and the Kolmogorov (C4) becomes{
Lτ(x) = −e−
F/ε for x ∈ D,

τ (x) = 0 for x ∈ ∂ D.
(C11)
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Consider a point x ∈ D near the boundary ∂ D, we can expand asymptotically in the
direction of n̂

x = u − εηn̂, (C12)

where u ∈ ∂ D and η > 0. Note that this is different from the asymptotic expansion used by
Liu et al. (2024). This expansion leads to

∇ f = ∂ f

∂xi
ei = d f

dη

∂η

∂xi
ei = −1

ε

d f

dη
n̂, (C13)

a : ∇∇ f = aij
∂

∂xi

∂

∂x j
f = 1

ε2 ai j
d2 f

dη2 n̂i n̂ j = 1
ε2 n̂ · (an̂)

d2 f

dη2 . (C14)

We can then expand the generator to the leading order and rewrite (C5) as

L= b(x) · ∇ + 1
2
εa(x) : ∇∇ ≈ b(u) · ∇ + 1

2
εa(u) : ∇∇

= 1
ε

[
−b(u) · n̂(u)︸ ︷︷ ︸

β(u)

d
dη

+ 1
2

n̂ · (a(u)n̂)︸ ︷︷ ︸
α(u)

d2

dη2

]
. (C15)

As ε → 0, the leading term of the right-hand side of the Kolmogorov (C11) is zero, and
we arrive at

0 =Lτ(η) = 1
ε

[
β(u)

∂τ

∂η
+ α(u)

∂2τ

∂η2

]
, (C16)

which can be solved with the boundary condition (C11) to give

τ(η) = C0

[
1 − exp

(
−β

α
η

)]
, (C17)

where C0 is some constant that we will determine next. One immediate observation is that
the waiting time increases exponentially with η, indicating the process spends most of its
time near the boundary. Integrating the Kolmogorov equation Lτ(x) = − exp(−
F/ε)

against the invariant density ρ∞(x) and applying the divergence theorem repeatedly, we
get

− exp(−
F/ε)

∫
B

ρ∞(x) dx =
∫

B
Lτ(x)ρ∞(x) dx (C18)

=
∫

B
b(x) · ∇τ(x)ρ∞(x) + 1

2
εa(x) : ∇∇τ(x)ρ∞ dx

(C19)

(C13)= −1
2

∫
∂ D

ρ∞(u)α(u)
dτ

dη
du

(C17)= −1
2

C0

∫
∂ D

β(u)ρ∞(u) du. (C20)

This then leads to

C0 = 2 exp(−
F/ε)

∫
B ρ∞(x) dx∫

∂ D β(u)ρ∞(u) du
, (C21)

and the mean first passage time by (C9) is given by

wB = 2

∫
B ρ∞(x) dx∫

∂ D β(u)ρ∞(u) du
. (C22)
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If the mobility operator has conserved quantity (Liu et al. 2024), the integrations must be
performed over the hyperplane,

wB = 2

∫
D/K ρ∞(x) dx∫

∂ D/K β(u)ρ∞(u) du
, (C23)

where K represents the dimensions perpendicular to the conserved quantities.

C.2. Average waiting time of adhesion for elastic membrane
We now apply the formula for the first passage time (C23) to the 1-D elastohydrodynamic
thin film (2.6) with only bending and thermal noise on a periodic domain x ∈ [0, 1]. Its
gradient flow form is given by

∂h

∂t
= −m[h]δF

δh
+ √

2εm1/2[h]η, (C24)

where F[h] is the energy functional

F[h] =
∫ 1

0

1
2

(
∂2h

∂x2

)2

dx, (C25)

δF/δh is the functional derivative of the energy functional, (for calculation of the
functional derivative, see Sprittles et al. 2023; Liu et al. 2024)

δF

δh
[h] = ∂4h

∂x4 , (C26)

m[h] is the mobility operator (acting on a test-function ξ )

m[h]ξ = − ∂

∂x

(
h3 ∂

∂x
ξ

)
, (C27)

m1/2[h] is the ‘square root’ of the mobility operator (acting on a test-function ξ )

m1/2[h]ξ =
√

h3 ∂

∂x
ξ, (C28)

ε is the noise amplitude

ε = Q2
1-D/2 (C29)

and η is a Gaussian white noise. It is obvious that the mobility operator conserves mass
given that a constant function is a zero eigenfunction (Liu et al. 2024) and the formula
for the average waiting time must respect the conserved quantity, which is (C23). Without
loss of generality, we let the mass to be h0 and we would like to calculate the average
time it takes for thermal fluctuations to drive a flat membrane h A(x) = h0 to bend into a
shape h(x) with minimum height h∗. This defines the boundary of the attractive basin ∂ D,
namely, all the membrane shapes that have minimum height h∗. Owing to the fact that the
invariant distribution ρ∞ is the Gibbs distribution, i.e. taking the form of an exponential,
the integrals in (C23) can be approximated using the Laplace method
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V. Dhaliwal, J. Liu and A. Carlson∫
D/K

ρ∞ dh = C
∫

D/K
exp

(
− F[h]

ε

)
dh

≈ C exp
(

− F[h0]
ε

) ∫
D/K

exp
(

− 1
2ε

(h − h0)
T H [h0](h − h0)

)
dh,∫

∂ D/K
β(h)ρ∞ dh = C

∫
∂ D/K

β(h) exp
(

− F[h]
ε

)
dh

≈ Cβ(hB) exp
(

− F[hB]
ε

) ∫
∂ D/K

exp
(

− 1
2ε

(h − hB)T H [hB](h − hB)

)
dh,

(C30)

where H [h] = δ2 F/δh2 is the Hessian operator of the energy F(h), and

hT H [h]h =
∫ 1

0
h
∂4h

∂x4 dx (C31)

can be interpreted as the inner product with respect to the Hessian (Liu et al. 2024). Apply
these to (C23) and the average waiting time is given by

wB = 2

∫
D/K exp

(
− 1

2ε
(h − h0)

T H [h0](h − h0)
)

dh∫
∂ D/K exp

(
− 1

2ε
(h − hB)T H [hB](h − hB)

)
dh

exp
(

F[hB] − F[h0]
ε

)
,

(C32)
whose form agrees with the result of the Large deviation theory (C9), and next, we need
to determine the energy barrier F[hB] − F[h0] and evaluate the integrals.

C.2.1. Minimum energy profile for binding
If the noise amplitude is very small, ε � 1, it is almost certain that the system
will reach ∂ D while increasing the least energy possible. So finding the energy
barrier F[hB] − F[h0] is reduced to finding the hB with minimum energy F ,
which has a minimum height h∗, while also conserving mass and satisfying the
boundary conditions of the problem. Mathematically, this corresponds to a constrained
optimisation problem in which we seek to minimise the energy functional F[h]. In
this section, we use the Lagrange multiplier method (Boas 2006) to find hB(x) and its
corresponding energy F[hB]. The Lagrangian taking into account the conservation of
mass is

F̃ = 1
2

(
∂ F̃

∂x

)2

+ λ(h − h0), (C33)

where λ is the Lagrange multiplier. The Euler–Lagrange equation is then given by

λ+ ∂4h

∂x4 = 0, (C34)

for which the general solution is a fourth-order polynomial. In addition, the solution must
satisfy our boundary and symmetry conditions, written as

h(0) = h(1) = h∗, (C35)

∂h

∂x

∣∣∣
x=1/2

= ∂3h

∂x3

∣∣∣
x=1/2

= 0. (C36)
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The four boundary conditions in (C35) and (C36) are not linearly independent, so two more
boundary conditions are required to determine the value of λ and the other coefficients in
the fourth-order polynomial. These are provided by requiring that the profile be smooth at
the point of attachment (as it always is in our numerical simulations)

∂h

∂x

∣∣∣
x=0

= ∂h

∂x

∣∣∣
x=1

= 0. (C37)

It is interesting to note that a smooth profile is required for a bending-dominated
membrane, when this is not the case for tension-dominated films (Sprittles et al. 2023).
A physical interpretation for this is that the curvature, and thus bending energy, goes to
infinity at a discontinuity in ∂h/∂x . This is also reflected in the smooth equilibrium profile
for a bending-dominated blister as opposed to the sharp edge (at least macroscopically) for
a capillary droplet.

When the boundary conditions of (C35)–(C37) and conservation of mass are applied to
a fourth-order polynomial, we obtain the following profile:

hB(x) = h∗ + 30(h0 − h∗)(x4 − 2x3 + x2). (C38)

This is the profile we predict as the average profile at the moment of binding when the
parameters Q1-D and h0 − h∗ are selected such that the binding event is sufficiently rare.
This prediction is confirmed by the data presented in figure 2, where the dashed blue
line represents (C38) and the black dots represent the average profile for 15 individual
simulations.

The energy barrier is then given by computing F for the profile of (C38),

F[hB] − F[h0] = 360(h0 − h∗)2. (C39)

C.2.2. Evaluation of the integrals
We now turn to the integrals in (C32). Due to periodicity, membrane shapes can be
decomposed into Fourier modes. At the cost of a small error, this allows us to evaluate
the integrals analytically. Decomposing h − h0 into Fourier modes gives

h(x) − h0 =
∞∑

n=1

an cos(2πnx) + bn sin(2πnx) (C40)

and so

(h − h0)
T H [h0](h − h0) =

∞∑
n=1

(2πn)8 1
2

(
a2

n + b2
n

)
, (C41)

which gives us∫
D/K

exp
(

− 1
2ε

(h − h0)
T H [h0](h − h0)

)
dh

=
∫ ∞

−∞
exp

(
− 1

2ε

∞∑
n=1

(2πn)8 1
2
(a2

n + b2
n)

) ∞∏
p=1

dandbn

=
∞∏

n=1

4επ

(2πn)8 . (C42)
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We can also decompose h − hB into Fourier modes, however, care must be taken when
integrating over ∂ D/K by retaining only the modes parallel to ∂ D at hB , or equivalently,
by removing the modes perpendicular to ∂ D at hB . Due to the way we constructed ∂ D,
the only mode to remove is n̂(hB), that is,

n̂(hB) = δF[hB]/δh

|δF[hB]/δh| = 2 cos(2πx). (C43)

Therefore, the decomposition is given by

h(x) − hB(x) = d1 sin(2πx) +
∞∑

n=2

cn cos(2πnx) + dn sin(2πnx), (C44)

which leads to

(h − hB)T H [hB](h − hB) = 1
2
(2π)8d2

1 +
∞∑

n=2

(2πn)8 1
2

(
a2

n + b2
n

)
(C45)

and so∫
∂ D/K

exp
(

− 1
2ε

(h − hB)T H [hB](h − hB)

)
dh

=
∫ ∞

−∞
exp

(
− 1

2ε
(2π)8 1

2
d2

1

)
dd1

∫ ∞

−∞
exp

(
− 1

2ε

∞∑
n=2

(2πn)8 1
2
(c2

n + d2
n )

) ∞∏
n=2

dcn ddn

=
√

2επ

(2π)8

∞∏
n=2

4επ

(2πn)8 . (C46)

C.2.3. Final result
Combining (C23) (C42) (C46), we get

wB = 2
β(hB)

exp
(

F[hB] − F[h0]
ε

)
4επ

(2π)8 , (C47)

and the only missing part is β(hB). By (C15) (C27) (C26), we have

β(hB) = −n̂(hB) ·
(

M(hB)
δF

δh
(hB)

)
= −(h − h∗)(2π)6

(
1
2

h3
0 + 3

8
h0(h0 − h∗)2

)
,

(C48)

where the inner product is interpreted as integral, same as (C31). Finally, with (C25), we
arrive at the expression for the average waiting time used in the main text (3.2),

〈tB〉 = wB = 1
β(hB)

√
Q2

1-D
(2π)7 exp

(
720

(
h0 − h∗

Q1-D

)2
)

. (C49)

Appendix D. Domain coarsening theory
In § 4, we present the results of simulations in which lumens are formed in the space
between two membranes, and then coarsen with time. Here, we provide more details about
how we quantify and rationalise the coarsening behaviour. First, we will discuss how we
compute the characteristic length scale Lc in light of previous work on phase separating
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systems. Second, we will provide more details on the theoretical description from § 4.1
which we use to rationalise the decreased growth rate for bending-driven coarsening.

D.1. Computation of the scaling length Lc

The separation of two phases in a 2-D domain is always a complex process, where
the fluxes giving rise to coarsening are inherently local phenomena that depend on the
specific morphology of the profile. For non-uniformly distributed profiles such as those
shown in figure 1(a,b), it is not straightforward to describe the morphology of the profile.
Nevertheless, the system does exhibit a clear and obvious change with respect to time,
as shown in figures 3 and 5. To gain a quantitative understanding of these phenomena,
a statistical approach can be used to gain insight into the ensemble-averaged behaviour
of such profiles over time. Specifically, the well-established scaling hypothesis for phase
separating dynamical systems states that during the late-stage of coarsening, the domain
structure is self-similar with respect to time when the length is rescaled by a single
length scale Lc(t) (Furukawa 1985; Bray 1994). When systems demonstrate this type of
behaviour, the morphologies of individual realisations of the system are still distinct, but
multiple realisations will look similar to the eye at a single time step. If one then zooms out
so that the length scale increases in accordance with Lc(t), the morphologies of multiple
trajectories will be indistinguishable even as time increases (Camley & Brown 2011). Many
systems have been shown to demonstrate this type of behaviour both numerically and
experimentally (Komura et al. 1985; Sung et al. 1996; Furukawa 2000; Livet et al. 2001;
Lal et al. 2020; Tateno & Tanaka 2021; Su et al. 2024).

The scaling hypothesis is thus a powerful concept that allows us to meaningfully
understand coarsening domains. The question that remains, however, is how the length
scale Lc(t) can be calculated from a height profile h(x, y, t). The scaling hypothesis
suggests that the domain structure should be independent of time except for a dependence
on Lc(t). The structure can by represented by its equal-time correlation function, which is
defined as

C(r, t) = 〈h(x + r, t)h(x, t)〉, (D1)

where x is the position vector (x, y), r is a displacement vector and the angular brackets
represent an ensemble average. If the scaling hypothesis is valid, C(r, t) should behave
according to

C(r, t) = f

(
r

Lc(t)

)
. (D2)

The equal-time structure factor, S(k, t), is defined as

S(k, t) = 〈hk(t)h−k(t)〉, (D3)

where k is now a wavevector and hk is the 2-D Fourier transform of h(x). Since S(k, t) is
simply the Fourier transform of C(r, t), it must have the scaling form

S(k, t) = L2
c g(k, Lc), (D4)

where g is the Fourier transform of f (Bray 1994). To calculate Lc one needs to
extract a length scale from S(k, t). This is commonly done by taking a moment of
spherically averaged structure function S(k, t) (Shinozaki & Oono 1993; Furukawa 2000;
Camley & Brown 2011). In this paper, we found more consistent results by calculating the
characteristic length using the following expression as suggested by Shinozaki & Oono
(1993):
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h = 1

h = 1 + �h
Interface

Bulk

Bulk

R
ĝ

Figure 9. Schematic showing the physical picture of ‘diffusive’ domain coarsening. Two bulk phases are
separated by a curved interface. The unit vector ĝ points in the direction normal to the interface.

Lc = 2π

∑
k �=0

|k|−2S(k)∑
k �=0

|k|−1S(k)
. (D5)

Our procedure for calculating Lc thus consisted of the following. First, hk was computed
for an individual profile by taking a 2-D fast Fourier transform of the height profile h(x, y).
Next, hk(t)h−k was computed for each profile, since it is equal to the Fourier transform of
C(r). Then, S(k) is computed as the ensemble average of hkh−k. Finally, (D5) is used to
compute Lc.

D.2. Coarsening rate for bending-driven coarsening
To predict how the coarsening rate will change when the tension term is replaced by
the bending term in (2.3), we follow the scaling logic of Bray (1994). We note that the
following theory only takes into account the change of the pressure term. It does not
account for the effects of nonlinear mobility or a complicated single-well potential, which
are included in our mathematical model. The simplified system we study in this section is
thus the following:

∂h

∂t
= ∇2 δF

δh
, (D6)

where the free energy F is given by

F =
∫ (

1
2

(∇2h
)2 + V (h)

)
. (D7)

Our goal will be to find out the motion of domain walls between two bulk regions, as
depicted in figure 9. We consider V (h) to be a symmetric double-well potential with wells
of even depth located at h = 1 and h = 1 + 
h. Although this obviously does not match the
energy from protein binding described in (A4), we expect the scaling rule to be insensitive
to the exact form of V (h). This is indeed justified by the numerical results in § 4.2, which
validate the 1/3 power law predicted by Bray for constant mobility films even when the
single-well potential of (A4) is used.

When the energy from (D7) is inserted into (D6), we get

∂h

∂t
= ∇2(∇4h + V ′(h)

)
. (D8)

We start by investigating the bulk phases where h is in the bound state and thus only
slightly deviates from its equilibrium value. We linearise (D8) by introducing h = 1 + h̃.
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This gives us the following linearised equation:

∂ h̃

∂t
= ∇6h̃ + V ′′(1)∇2h̃. (D9)

Since the characteristic domain size Lc is large during late-stage coarsening, the ∼∇6

term can be neglected, which reduces (D9) to a diffusion equation for h̃ with diffusion
coefficient V ′′(1). Now, we expect that during late-stage coarsening, the diffusion field
relaxes much faster than the motion of the domain walls. We can thus assume that this
diffusion field is always in a quasi-equilibrium with the location of the interface, i.e.

∇2h = 0 (D10)

in the bulk regions away from the interface.
Before we start investigating the interfaces between the bulk phases, we will reformulate

(D8) in terms of a flux j given by the gradient of a chemical potential Φ (which is
equivalent to the pressure in our system):

∂h

∂t
= −∇ · j , (D11)

j = −∇Φ, (D12)

Φ = ∂V

∂h
+ ∇4h. (D13)

If we now introduce the linearised h = 1 + h̃ into (D13), we get

Φ = ∇4h̃ + V ′′(1)h̃. (D14)

Again, during the latter stages of coarsening, the length scale is large, meaning that the
∼∇4 term in (D14) is negligible. This gives us Φ ∼ h̃ in the bulk phases, meaning that Φ

also satisfies the Laplace equation

∇2Φ = 0. (D15)

To find out what Φ is at the boundary between the bulk phases, we first introduce
the alternate coordinate system shown in figure 9 to simplify the vector calculus
calculations. The unit vector ĝ points in the direction perpendicular to the interface
(g = ±∞ in the bulk and g = 0 at the centre of the interface). In the following, we
will study an interface with the circular geometry shown in figure 9, meaning that ∇φ =
(∂φ/∂g) ĝ and ∇ · ĝ = 1/R near the interface. This allows us to compute the Laplacian as
∇2φ = ∂2φ/∂g2 + (∂φ/∂g)∇ · ĝ. When these identities are inserted into (D13), we find
that

Φ = ∂V

∂h
+ ∂4h

∂g4 + 2
R

∂3h

∂g3 − 1
R2

∂2h

∂g2 + 1
R3

∂h

∂g
. (D16)

To find the value of Φ at an interface with radius of curvature R, we then multiply (D16)
by ∂h/∂g and integrate across the interface from g = −∞ to g = ∞. This gives us

Φ
h = 
V +
∫ ∞

−∞
∂4h

∂g4
∂h

∂g
dg + 2

R

∫ ∞

−∞
∂3h

∂g3
∂h

∂g
dg

− 1
2R2

∫ ∞

−∞
∂

∂g

(
∂h

∂g

)2

dg + 1
R3

∫ ∞

−∞

(
∂h

∂g

)2

dg. (D17)
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The 
V term on the right-hand side of (D17) is zero because the potential wells we
are considering have equal depth. The third term on the right-hand side disappears to
to the bulk boundary condition ∂h/∂g

∣∣∣±∞ = 0. The second term on the right-hand side

disappears upon using integration by parts and implementing the boundary conditions
∂h/∂g

∣∣∣±∞ = ∂2h/∂g2
∣∣∣±∞ = 0. Equation (D17) then reduces to

Φ
h = − 2
R

∫ ∞

−∞

(
∂2h

∂g2

)2

dg + 1
R3

∫ ∞

−∞

(
∂h

∂g

)2

dg, (D18)

which is the equivalent of the Gibbs–Thompson boundary condition for an interface
with bending energy. The factors −2

∫∞
−∞(∂2h/∂g2)2 dg and

∫∞
−∞(∂h/∂g)2 dg can be

interpreted as effective ‘line tension’ coefficients Γ1 and Γ2, respectively, as they represent
an energy per unit length associated with the circular interface between the two phases.
Equation (D18) can thus be rewritten as

Φ
h = Γ1

R
+ Γ2

R3 . (D19)

Having found the chemical potential of a curved interface, we can now use (D12) to find
the flux j . The velocity vint at which the interface moves can be found from the difference
in flux leaving the interface and flux entering the interface:

vint
h = jout − j in = −
((

∂Φ

∂g

)
R+ε

−
(

∂Φ

∂g

)
R−ε

)
. (D20)

Setting vint equal to the rate of the change of the characteristic length scale Lc (in this
case, the radius R) and using the chemical potential from (D19), we can get a prediction
for how Lc will grow with time:

dLc

dt
∼ Γ1

L2
c

+ Γ2

L4
c
. (D21)

This growth leads to power law growth where Lc grows with a power law having
an exponent somewhere between 1/5 and 1/3, depending on the relative sizes of Γ1
and Γ2.

We note here the difference between (D19) for the bending-dominated case as opposed
to the membrane tension-dominated case, for which there is only one line tension between
the two phases, Γ = ∫∞

−∞(∂h/∂g)2 dg, with the growth law dLc/dt ∼ Γ/L2
c . Both the

terms in the bending-driven coarsening law are thus distinct from the membrane tension-
driven coarsening law, because although Γ2 is equivalent to Γ , it multiplies the curvature
cubed in (D19) rather than the curvature as is the case for tension-driven coarsening (Bray
1994).
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